Source code for data_model.metadata_model
"""
Definition of metadata model for input to and output of simtools.
Follows CTAO top-level data model definition.
* data products submitted to SimPipe ('input')
* data products generated by SimPipe ('output')
"""
import logging
from importlib.resources import files
import jsonschema
import simtools.constants
import simtools.utils.general as gen
from simtools.data_model import format_checkers
from simtools.utils import names
_logger = logging.getLogger(__name__)
[docs]
def validate_schema(data, schema_file):
"""
Validate dictionary against schema.
Parameters
----------
data
dictionary to be validated
schema_file (dict)
schema used for validation
Raises
------
jsonschema.exceptions.ValidationError
if validation fails
"""
schema, schema_file = _load_schema(schema_file)
try:
jsonschema.validate(data, schema=schema, format_checker=format_checkers.format_checker)
except jsonschema.exceptions.ValidationError:
_logger.error(f"Failed using {schema}")
raise
_logger.debug(f"Successful validation of data using schema from {schema_file}")
def _load_schema(schema_file=None):
"""
Load parameter schema from file from simpipe metadata schema.
Returns
-------
schema_file dict
Schema used for validation.
schema_file str
File name schema is loaded from. If schema_file is not given,
the default schema file name is returned.
Raises
------
FileNotFoundError
if schema file is not found
"""
if schema_file is None:
schema_file = files("simtools").joinpath(simtools.constants.METADATA_JSON_SCHEMA)
try:
schema = gen.collect_data_from_file(file_name=schema_file)
except FileNotFoundError:
schema_file = files("simtools").joinpath("schemas") / schema_file
schema = gen.collect_data_from_file(file_name=schema_file)
_logger.debug(f"Loading schema from {schema_file}")
_add_array_elements("InstrumentTypeElement", schema)
return schema, schema_file
def _add_array_elements(key, schema):
"""
Add list of array elements to schema.
This assumes an element [key]['enum'] is a list of elements.
Parameters
----------
key: str
Key in schema dictionary
schema: dict
Schema dictionary
Returns
-------
dict
Schema dictionary with added array elements.
"""
_list_of_array_elements = sorted(names.array_elements().keys())
def recursive_search(sub_schema, key):
if key in sub_schema:
if "enum" in sub_schema[key] and isinstance(sub_schema[key]["enum"], list):
sub_schema[key]["enum"] = list(
set(sub_schema[key]["enum"] + _list_of_array_elements)
)
else:
sub_schema[key]["enum"] = _list_of_array_elements
else:
for _, v in sub_schema.items():
if isinstance(v, dict):
recursive_search(v, key)
recursive_search(schema, key)
return schema
def _resolve_references(yaml_data, observatory="CTA"):
"""
Resolve references in yaml data and expand the received dictionary accordingly.
Parameters
----------
yaml_data: dict
Dictionary with yaml data.
observatory: str
Observatory name
Returns
-------
dict
Dictionary with resolved references.
"""
def expand_ref(ref):
ref_path = ref.lstrip("#/")
parts = ref_path.split("/")
ref_data = yaml_data
for part in parts:
if part in ("definitions", observatory):
continue
ref_data = ref_data.get(part, {})
return ref_data
def resolve_dict(data):
if "$ref" in data:
ref = data["$ref"]
resolved_data = expand_ref(ref)
if isinstance(resolved_data, dict) and len(resolved_data) > 1:
return _resolve_references_recursive(resolved_data)
return resolved_data
return {k: _resolve_references_recursive(v) for k, v in data.items()}
def resolve_list(data):
return [_resolve_references_recursive(item) for item in data]
def _resolve_references_recursive(data):
if isinstance(data, dict):
return resolve_dict(data)
if isinstance(data, list):
return resolve_list(data)
return data
return _resolve_references_recursive(yaml_data)
def _fill_defaults(schema, observatory="CTA"):
"""
Fill default values from json schema.
Parameters
----------
schema: dict
Schema describing the input data.
observatory: str
Observatory name
Returns
-------
dict
Dictionary with default values.
"""
defaults = {observatory: {}}
resolved_schema = _resolve_references(schema[observatory])
_fill_defaults_recursive(resolved_schema, defaults[observatory])
return defaults
def _fill_defaults_recursive(subschema, current_dict):
"""
Recursively fill default values from the subschema into the current dictionary.
Parameters
----------
subschema: dict
Subschema describing part of the input data.
current_dict: dict
Current dictionary to fill with default values.
"""
if "properties" not in subschema:
_raise_missing_properties_error()
for prop, prop_schema in subschema["properties"].items():
_process_property(prop, prop_schema, current_dict)
def _process_property(prop, prop_schema, current_dict):
"""
Process each property and fill the default values accordingly.
Parameters
----------
prop: str
Property name.
prop_schema: dict
Schema of the property.
current_dict: dict
Current dictionary to fill with default values.
"""
if "default" in prop_schema:
current_dict[prop] = prop_schema["default"]
elif "type" in prop_schema:
if prop_schema["type"] == "object":
current_dict[prop] = {}
_fill_defaults_recursive(prop_schema, current_dict[prop])
elif prop_schema["type"] == "array":
current_dict[prop] = [{}]
if "items" in prop_schema and isinstance(prop_schema["items"], dict):
_fill_defaults_recursive(prop_schema["items"], current_dict[prop][0])
def _raise_missing_properties_error():
"""Raise an error when the 'properties' key is missing in the schema."""
msg = "Missing 'properties' key in schema."
_logger.error(msg)
raise KeyError(msg)