Source code for data_model.metadata_model

"""
Definition of metadata model for input to and output of simtools.

Follows CTAO top-level data model definition.

* data products submitted to SimPipe ('input')
* data products generated by SimPipe ('output')

"""

import logging
from importlib.resources import files

import jsonschema

import simtools.constants
import simtools.utils.general as gen
from simtools.data_model import format_checkers
from simtools.utils import names

_logger = logging.getLogger(__name__)


[docs] def validate_schema(data, schema_file): """ Validate dictionary against schema. Parameters ---------- data dictionary to be validated schema_file (dict) schema used for validation Raises ------ jsonschema.exceptions.ValidationError if validation fails """ schema, schema_file = _load_schema(schema_file) try: jsonschema.validate(data, schema=schema, format_checker=format_checkers.format_checker) except jsonschema.exceptions.ValidationError: _logger.error(f"Failed using {schema}") raise _logger.debug(f"Successful validation of data using schema from {schema_file}")
[docs] def get_default_metadata_dict(schema_file=None, observatory="CTA"): """ Return metadata schema with default values. Follows the CTA Top-Level Data Model. Parameters ---------- schema_file: str Schema file (jsonschema format) used for validation observatory: str Observatory name Returns ------- dict Reference schema dictionary. """ schema, _ = _load_schema(schema_file) return _fill_defaults(schema["definitions"], observatory)
def _load_schema(schema_file=None): """ Load parameter schema from file from simpipe metadata schema. Returns ------- schema_file dict Schema used for validation. schema_file str File name schema is loaded from. If schema_file is not given, the default schema file name is returned. Raises ------ FileNotFoundError if schema file is not found """ if schema_file is None: schema_file = files("simtools").joinpath(simtools.constants.METADATA_JSON_SCHEMA) try: schema = gen.collect_data_from_file_or_dict(file_name=schema_file, in_dict=None) except FileNotFoundError: schema_file = files("simtools").joinpath("schemas") / schema_file schema = gen.collect_data_from_file_or_dict(file_name=schema_file, in_dict=None) _logger.debug(f"Loading schema from {schema_file}") _add_array_elements("InstrumentTypeElement", schema) return schema, schema_file def _add_array_elements(key, schema): """ Add list of array elements to schema. This assumes an element [key]['enum'] is a list of elements. Parameters ---------- key: str Key in schema dictionary schema: dict Schema dictionary Returns ------- dict Schema dictionary with added array elements. """ _list_of_array_elements = sorted(names.array_elements().keys()) def recursive_search(sub_schema, key): if key in sub_schema: if "enum" in sub_schema[key] and isinstance(sub_schema[key]["enum"], list): sub_schema[key]["enum"] = list( set(sub_schema[key]["enum"] + _list_of_array_elements) ) else: sub_schema[key]["enum"] = _list_of_array_elements else: for _, v in sub_schema.items(): if isinstance(v, dict): recursive_search(v, key) recursive_search(schema, key) return schema def _resolve_references(yaml_data, observatory="CTA"): """ Resolve references in yaml data and expand the received dictionary accordingly. Parameters ---------- yaml_data: dict Dictionary with yaml data. observatory: str Observatory name Returns ------- dict Dictionary with resolved references. """ def expand_ref(ref): ref_path = ref.lstrip("#/") parts = ref_path.split("/") ref_data = yaml_data for part in parts: if part in ("definitions", observatory): continue ref_data = ref_data.get(part, {}) return ref_data def resolve_dict(data): if "$ref" in data: ref = data["$ref"] resolved_data = expand_ref(ref) if isinstance(resolved_data, dict) and len(resolved_data) > 1: return _resolve_references_recursive(resolved_data) return resolved_data return {k: _resolve_references_recursive(v) for k, v in data.items()} def resolve_list(data): return [_resolve_references_recursive(item) for item in data] def _resolve_references_recursive(data): if isinstance(data, dict): return resolve_dict(data) if isinstance(data, list): return resolve_list(data) return data return _resolve_references_recursive(yaml_data) def _fill_defaults(schema, observatory="CTA"): """ Fill default values from json schema. Parameters ---------- schema: dict Schema describing the input data. observatory: str Observatory name Returns ------- dict Dictionary with default values. """ defaults = {observatory: {}} resolved_schema = _resolve_references(schema[observatory]) _fill_defaults_recursive(resolved_schema, defaults[observatory]) return defaults def _fill_defaults_recursive(subschema, current_dict): """ Recursively fill default values from the subschema into the current dictionary. Parameters ---------- subschema: dict Subschema describing part of the input data. current_dict: dict Current dictionary to fill with default values. """ if "properties" not in subschema: _raise_missing_properties_error() for prop, prop_schema in subschema["properties"].items(): _process_property(prop, prop_schema, current_dict) def _process_property(prop, prop_schema, current_dict): """ Process each property and fill the default values accordingly. Parameters ---------- prop: str Property name. prop_schema: dict Schema of the property. current_dict: dict Current dictionary to fill with default values. """ if "default" in prop_schema: current_dict[prop] = prop_schema["default"] elif "type" in prop_schema: if prop_schema["type"] == "object": current_dict[prop] = {} _fill_defaults_recursive(prop_schema, current_dict[prop]) elif prop_schema["type"] == "array": current_dict[prop] = [{}] if "items" in prop_schema and isinstance(prop_schema["items"], dict): _fill_defaults_recursive(prop_schema["items"], current_dict[prop][0]) def _raise_missing_properties_error(): """Raise an error when the 'properties' key is missing in the schema.""" msg = "Missing 'properties' key in schema." _logger.error(msg) raise KeyError(msg)