Source code for data_model.validate_data

"""Validation of data using schema."""

import logging
import os
import re
from pathlib import Path

import jsonschema
import numpy as np
from astropy import units as u
from astropy.table import Column, Table, unique
from astropy.utils.diff import report_diff_values

import simtools.utils.general as gen
from simtools.data_model import format_checkers
from simtools.utils import value_conversion

__all__ = ["DataValidator"]


[docs] class DataValidator: """ Validate data for type and units following a describing schema; converts or transform data. Data can be of table or dict format (internally, all data is converted to astropy tables). Parameters ---------- schema_file: Path Schema file describing input data and transformations. data_file: Path Input data file. data_table: astropy.table Input data table. data_dict: dict Input data dict. check_exact_data_type: bool Check for exact data type (default: True). """ def __init__( self, schema_file=None, data_file=None, data_table=None, data_dict=None, check_exact_data_type=True, ): """Initialize validation class and read required reference data columns.""" self._logger = logging.getLogger(__name__) self.data_file_name = data_file self.schema_file_name = schema_file self._data_description = None self.data_dict = data_dict self.data_table = data_table self.check_exact_data_type = check_exact_data_type
[docs] def validate_and_transform(self, is_model_parameter=False): """ Validate data and data file. Parameters ---------- is_model_parameter: bool This is a model parameter (add some data preparation) Returns ------- data: dict or astropy.table Data dict or table Raises ------ TypeError if no data or data table is available """ if self.data_file_name: self.validate_data_file() if isinstance(self.data_dict, dict): if is_model_parameter: self._prepare_model_parameter() self._validate_data_dict() return self.data_dict if isinstance(self.data_table, Table): self._validate_data_table() return self.data_table self._logger.error("No data or data table to validate") raise TypeError
[docs] def validate_data_file(self): """ Open data file and read data from file. Doing this successfully is understood as file validation. """ try: if Path(self.data_file_name).suffix in (".yml", ".yaml", ".json"): self.data_dict = gen.collect_data_from_file(self.data_file_name) self._logger.info(f"Validating data from: {self.data_file_name}") else: self.data_table = Table.read(self.data_file_name, guess=True, delimiter=r"\s") self._logger.info(f"Validating tabled data from: {self.data_file_name}") except (AttributeError, TypeError): pass
[docs] def validate_parameter_and_file_name(self): """Validate that file name and key 'parameter_name' in data dict are the same.""" if self.data_dict.get("parameter") != Path(self.data_file_name).stem: raise ValueError( f"Parameter name in data dict {self.data_dict.get('parameter')} and " f"file name {Path(self.data_file_name).stem} do not match." )
def _validate_data_dict(self): """ Validate values in a dictionary. Handles different types of naming in data dicts (using 'name' or 'parameter' keys for name fields). Raises ------ KeyError if data dict does not contain a 'name' or 'parameter' key. """ if not (_name := self.data_dict.get("name") or self.data_dict.get("parameter")): raise KeyError("Data dict does not contain a 'name' or 'parameter' key.") self._data_description = self._read_validation_schema(self.schema_file_name, _name) value_as_list, unit_as_list = self._get_value_and_units_as_lists() for index, (value, unit) in enumerate(zip(value_as_list, unit_as_list)): value_as_list[index], unit_as_list[index] = self._validate_value_and_unit( value, unit, index ) if len(value_as_list) == 1: self.data_dict["value"], self.data_dict["unit"] = value_as_list[0], unit_as_list[0] else: self.data_dict["value"], self.data_dict["unit"] = value_as_list, unit_as_list self._check_version_string(self.data_dict.get("version")) def _validate_value_and_unit(self, value, unit, index): """ Validate value, unit, and perform type checking and conversions. Take into account different data types and allow to use json_schema for testing. """ if self._get_data_description(index).get("type", None) == "dict": self._validate_data_dict_using_json_schema( self.data_dict["value"], self._get_data_description(index).get("json_schema") ) else: self._check_data_type(np.array(value).dtype, index) if self.data_dict.get("type") not in ("string", "dict", "file"): self._check_for_not_a_number(value, index) value, unit = self._check_and_convert_units(value, unit, index) for range_type in ("allowed_range", "required_range"): self._check_range(index, np.nanmin(value), np.nanmax(value), range_type) return value, unit def _get_value_and_units_as_lists(self): """ Convert value and unit to lists if required. Ignore unit field in data_dict if value is a astropy.Quantity. Note the complications from astropy.Units, where a single value is of np.ndarray type. Returns ------- list value as list list unit as list """ target_unit = self.data_dict["unit"] value, unit = value_conversion.split_value_and_unit(self.data_dict["value"]) if not isinstance(value, list | np.ndarray): value, unit = [value], [unit] if not isinstance(target_unit, list | np.ndarray): target_unit = [target_unit] * len(value) target_unit = [None if unit == "null" else unit for unit in target_unit] conversion_factor = [ 1 if v is None else u.Unit(v).to(u.Unit(t)) for v, t in zip(unit, target_unit) ] return [v * c for v, c in zip(value, conversion_factor)], target_unit def _validate_data_dict_using_json_schema(self, data, json_schema): """ Validate a dictionary using a json schema. Parameters ---------- data: dict Data dictionary json_schema: dict JSON schema """ if json_schema is None: self._logger.debug("Skipping validation of dict type") return self._logger.debug("Validation of dict type using JSON schema") try: jsonschema.validate(data, json_schema, format_checker=format_checkers.format_checker) except jsonschema.exceptions.ValidationError as exc: self._logger.error(f"Validation error: {exc}") raise exc def _validate_data_table(self): """Validate tabulated data.""" try: self._data_description = self._read_validation_schema(self.schema_file_name)[0].get( "table_columns", None ) except IndexError: self._logger.error(f"Error reading validation schema from {self.schema_file_name}") raise if self._data_description is not None: self._validate_data_columns() self._check_data_for_duplicates() self._sort_data() def _validate_data_columns(self): """ Validate that data columns. This includes: - required data columns are available - columns are in the correct units (if necessary apply a unit conversion) - ranges (minimum, maximum) are correct. This is not applied to columns of type 'string'. """ self._check_required_columns() for col_name in self.data_table.colnames: col = self.data_table[col_name] if not self._get_data_description(col_name, status_test=True): continue if not np.issubdtype(col.dtype, np.number): continue self._check_for_not_a_number(col.data, col_name) self._check_data_type(col.dtype, col_name) self.data_table[col_name] = col.to(u.Unit(self._get_reference_unit(col_name))) self._check_range(col_name, np.nanmin(col.data), np.nanmax(col.data), "allowed_range") self._check_range(col_name, np.nanmin(col.data), np.nanmax(col.data), "required_range") def _check_required_columns(self): """ Check that all required data columns are available in the input data table. Raises ------ KeyError if a required data column is missing """ for entry in self._data_description: if entry.get("required", False): if entry["name"] in self.data_table.columns: self._logger.debug(f"Found required data column {entry['name']}") else: raise KeyError(f"Missing required column {entry['name']}") def _sort_data(self): """ Sort data according to one data column (if required by any column attribute). Data is either sorted or reverse sorted. Raises ------ AttributeError if no table is defined for sorting """ _columns_by_which_to_sort = [] _columns_by_which_to_reverse_sort = [] for entry in self._data_description: if "input_processing" in entry: if "sort" in entry["input_processing"]: _columns_by_which_to_sort.append(entry["name"]) elif "reversesort" in entry["input_processing"]: _columns_by_which_to_reverse_sort.append(entry["name"]) if len(_columns_by_which_to_sort) > 0: self._logger.debug(f"Sorting data columns: {_columns_by_which_to_sort}") try: self.data_table.sort(_columns_by_which_to_sort) except AttributeError: self._logger.error("No data table defined for sorting") raise elif len(_columns_by_which_to_reverse_sort) > 0: self._logger.debug(f"Reverse sorting data columns: {_columns_by_which_to_reverse_sort}") try: self.data_table.sort(_columns_by_which_to_reverse_sort, reverse=True) except AttributeError: self._logger.error("No data table defined for reverse sorting") raise def _check_data_for_duplicates(self): """ Remove duplicates from data columns as defined in the data columns description. Raises ------ if row values are different for those rows with duplications in the data columns to be checked for unique values. """ _column_with_unique_requirement = self._get_unique_column_requirement() if len(_column_with_unique_requirement) == 0: self._logger.debug("No data columns with unique value requirement") return _data_table_unique_for_key_column = unique( self.data_table, keys=_column_with_unique_requirement ) _data_table_unique_for_all_columns = unique(self.data_table, keys=None) with open(os.devnull, "w", encoding="utf-8") as devnull: if report_diff_values( _data_table_unique_for_key_column, _data_table_unique_for_all_columns, fileobj=devnull, ): self.data_table = unique(self.data_table) else: raise ValueError( "Failed removal of duplication for column " f"{_column_with_unique_requirement}, values are not unique" ) def _get_unique_column_requirement(self): """ Return data column name with unique value requirement. Returns ------- list list of data column with unique value requirement """ _unique_required_column = [] for entry in self._data_description: if "input_processing" in entry and "remove_duplicates" in entry["input_processing"]: self._logger.debug(f"Removing duplicates for column {entry['name']}") _unique_required_column.append(entry["name"]) self._logger.debug(f"Unique required columns: {_unique_required_column}") return _unique_required_column def _get_reference_unit(self, column_name): """ Return reference column unit. Includes correct treatment of dimensionless units. Parameters ---------- column_name: str column name of reference data column Returns ------- astro.unit unit for reference column Raises ------ KeyError if column name is not found in reference data columns """ reference_unit = self._get_data_description(column_name).get("unit", None) if reference_unit in ("dimensionless", None, ""): return u.dimensionless_unscaled return u.Unit(reference_unit) def _check_data_type(self, dtype, column_name): """ Check column data type. Parameters ---------- dtype: numpy.dtype data type column_name: str column name Raises ------ TypeError if data type is not correct """ reference_dtype = self._get_data_description(column_name).get("type", None) if not gen.validate_data_type( reference_dtype=reference_dtype, value=None, dtype=dtype, allow_subtypes=(not self.check_exact_data_type), ): self._logger.error( f"Invalid data type in column '{column_name}'. " f"Expected type '{reference_dtype}', found '{dtype}' " f"(exact type: {self.check_exact_data_type})" ) raise TypeError def _check_for_not_a_number(self, data, col_name): """ Check that column values are finite and not NaN. Parameters ---------- data: value or numpy.ndarray data to be tested col_name: str column name Returns ------- bool if at least one column value is NaN or Inf. Raises ------ ValueError if at least one column value is NaN or Inf. """ if isinstance(data, str): return True if not isinstance(data, np.ndarray): data = np.array(data) if np.isnan(data).any(): self._logger.info(f"Column {col_name} contains NaN.") if np.isinf(data).any(): self._logger.info(f"Column {col_name} contains infinite value.") entry = self._get_data_description(col_name) if "allow_nan" in entry.get("input_processing", {}): return np.isnan(data).any() or np.isinf(data).any() if np.isnan(data).any() or np.isinf(data).any(): raise ValueError("NaN or Inf values found in data") return False @staticmethod def _is_dimensionless(unit): """ Check if unit is dimensionless, None, or empty. Parameters ---------- unit: str unit of data column Returns ------- bool True if unit is dimensionless, None, or empty """ return unit in ("dimensionless", None, "") def _check_and_convert_units(self, data, unit, col_name): """ Check that input data have an allowed unit. Convert to reference unit (e.g., Angstrom to nm). Note on dimensionless columns: - should be given in unit descriptor as unit: '' - be forgiving and assume that in cases no unit is given in the data files means that it should be dimensionless (e.g., for a efficiency) Parameters ---------- data: astropy.column, Quantity, list, value data to be converted unit: str unit of data column (read from column or Quantity if possible) col_name: str column name Returns ------- data: astropy.column, Quantity, list, value unit-converted data Raises ------ u.core.UnitConversionError If unit conversions fails """ self._logger.debug(f"Checking data column '{col_name}'") reference_unit = self._get_reference_unit(col_name) try: column_unit = data.unit except AttributeError: column_unit = unit if self._is_dimensionless(column_unit) and self._is_dimensionless(reference_unit): return data, u.dimensionless_unscaled self._logger.debug( f"Data column '{col_name}' with reference unit " f"'{reference_unit}' and data unit '{column_unit}'" ) try: if isinstance(data, u.Quantity | Column): return data.to(reference_unit), reference_unit if isinstance(data, list | np.ndarray): return self._check_and_convert_units_for_list(data, column_unit, reference_unit) # ensure that the data type is preserved (e.g., integers) return (type(data)(u.Unit(column_unit).to(reference_unit) * data), reference_unit) except (u.core.UnitConversionError, ValueError) as exc: self._logger.error( f"Invalid unit in data column '{col_name}'. " f"Expected type '{reference_unit}', found '{column_unit}'" ) raise u.core.UnitConversionError from exc def _check_and_convert_units_for_list(self, data, column_unit, reference_unit): """ Check and convert units data in a list or or numpy array. Takes into account that data can be dimensionless (with unit 'None', 'dimensionless' or ''). Parameters ---------- data: list list of data column_unit: str unit of data column reference_unit: str reference unit Returns ------- list converted data """ return [ ( u.Unit(_to_unit).to(reference_unit) * d if _to_unit not in (None, "dimensionless", "") else d ) for d, _to_unit in zip(data, column_unit) ], reference_unit def _check_range(self, col_name, col_min, col_max, range_type="allowed_range"): """ Check that column data is within allowed range or required range. Assumes that column and ranges have the same units. Parameters ---------- col_name: string column name col_min: float minimum value of data column col_max: float maximum value of data column range_type: string column range type (either 'allowed_range' or 'required_range') Raises ------ ValueError if columns are not in the required range KeyError if requested columns cannot be found or if there is now defined of required or allowed range columns """ self._logger.debug(f"Checking data in column '{col_name}' for '{range_type}' ") if range_type not in ("allowed_range", "required_range"): raise KeyError("Allowed range types are 'allowed_range', 'required_range'") _entry = self._get_data_description(col_name) if range_type not in _entry: return if not self._interval_check( (col_min, col_max), (_entry[range_type].get("min", -np.inf), _entry[range_type].get("max", np.inf)), range_type, ): raise ValueError( f"Value for column '{col_name}' out of range. " f"([{col_min}, {col_max}], {range_type}: " f"[{_entry[range_type].get('min', -np.inf)}, " f"{_entry[range_type].get('max', np.inf)}])" ) @staticmethod def _interval_check(data, axis_range, range_type): """ Range checking for a given set of data. Check that values are inside allowed range or interval. This(range_type='allowed_range') or span at least the given interval (range_type='required_range'). Parameters ---------- data: tuple min and max of data axis_range: tuple allowed or required min max range_type: string column range type (either 'allowed_range' or 'required_range') Returns ------- boolean True if range test is passed """ if range_type == "allowed_range": if data[0] >= axis_range[0] and data[1] <= axis_range[1]: return True if range_type == "required_range": if data[0] <= axis_range[0] and data[1] >= axis_range[1]: return True return False def _read_validation_schema(self, schema_file, parameter=None): """ Read validation schema from file. Parameters ---------- schema_file: Path Schema file describing input data. If this is a directory, a filename of '<par>.schema.yml' is assumed. parameter: str Parameter name of required schema (if None, return first schema in file) Returns ------- dict validation schema Raises ------ KeyError if 'data' can not be read from dict in schema file """ try: if Path(schema_file).is_dir(): return gen.collect_data_from_file( file_name=Path(schema_file) / (parameter + ".schema.yml"), )["data"] return gen.collect_data_from_file(file_name=schema_file)["data"] except KeyError: self._logger.error(f"Error reading validation schema from {schema_file}") raise def _get_data_description(self, column_name=None, status_test=False): """ Return data description as provided by the schema file. For tables (type: 'data_table'), return the description of the column named 'column_name'. For other types, return all data descriptions. For columns named 'colX' return the Xth column in the reference data. Parameters ---------- column_name: str Column name. status_test: bool Test if reference column exists. Returns ------- dict Reference schema column (for status_test==False). bool True if reference column exists (for status_test==True). Raises ------ IndexError If data column is not found. """ self._logger.debug( f"Getting reference data column {column_name} from schema {self._data_description}" ) try: return ( self._data_description[column_name] if not status_test else ( self._data_description[column_name] is not None and len(self._data_description) > 0 ) ) except IndexError as exc: self._logger.error( f"Data column '{column_name}' not found in reference column definition" ) raise exc except TypeError: pass # column_name is not an integer _index = 0 if bool(re.match(r"^col\d$", column_name)): _index = int(column_name[3:]) _entry = self._data_description else: _entry = [item for item in self._data_description if item["name"] == column_name] if status_test: return len(_entry) > 0 try: return _entry[_index] except IndexError: self._logger.error( f"Data column '{column_name}' not found in reference column definition" ) raise def _prepare_model_parameter(self): """ Apply data preparation for model parameters. Converts strings to numerical values or lists of values, if required. """ value = self.data_dict["value"] if not isinstance(value, str): return # assume float value if type is not defined _is_float = self.data_dict.get("type", "float").startswith(("float", "double")) if value.isnumeric(): self.data_dict["value"] = float(value) if _is_float else int(value) else: self.data_dict["value"] = gen.convert_string_to_list(value, is_float=_is_float) if self.data_dict["unit"] is not None: self.data_dict["unit"] = gen.convert_string_to_list(self.data_dict["unit"]) def _check_version_string(self, version): """ Check that version string follows semantic versioning. Parameters ---------- version: str version string Raises ------ ValueError if version string does not follow semantic versioning """ if version is None: return semver_regex = r"^\d+\.\d+\.\d+(-[0-9A-Za-z.-]+)?(\+[0-9A-Za-z.-]+)?$" if not re.match(semver_regex, version): raise ValueError(f"Invalid version string '{version}'") self._logger.debug(f"Valid version string '{version}'")