Source code for derive_psf_parameters

#!/usr/bin/python3

r"""
    Derives the mirror alignment parameters using cumulative PSF measurement.

    This includes parameters mirror_reflection_random_angle, \
    mirror_align_random_horizontal and mirror_align_random_vertical.

    The telescope zenith angle and the source distance can be set by command line arguments.

    The measured cumulative PSF should be provided by using the command line argument data. \
    A file name is expected, in which the file should contain 3 columns: radial distance in mm, \
    differential value of photon intensity and its integral value.

    The derivation is performed through a random search. A number of random combination of the \
    parameters are tested and the best ones are selected based on the minimum value of \
    the Root Mean Squared Deviation between data and simulations. The range in which the \
    parameter are drawn uniformly are defined based on the previous value on the telescope model.

    The assumption are:

    a) mirror_align_random_horizontal and mirror_align_random_vertical are the same.

    b) mirror_align_random_horizontal/vertical have no dependence on the zenith angle.

    One example of the plot generated by this applications are shown below.

    .. _derive_psf_parameters_plot:
    .. image::  images/derive_psf_parameters.png
      :width: 49 %

    Command line arguments
    ----------------------
    site (str, required)
        North or South.
    telescope (str, required)
        Telescope model name (e.g. LST-1, SST-D, ...).
    model_version (str, optional)
        Model version.
    src_distance (float, optional)
        Source distance in km.
    zenith (float, optional)
        Zenith angle in deg.
    data (str, optional)
        Name of the data file with the measured cumulative PSF.
    plot_all (activation mode, optional)
        If activated, plots will be generated for all values tested during tuning.
    fixed (activation mode, optional)
        Keep the first entry of mirror_reflection_random_angle fixed.
    test (activation mode, optional)
        If activated, application will be faster by simulating fewer photons.

    Example
    -------
    LSTN-01 5.0.0

    Runtime < 3 min.

    Get PSF data from the DB:

    .. code-block:: console

        simtools-db-get-file-from-db --file_name PSFcurve_data_v2.txt

    Run the application:

    .. code-block:: console

        simtools-derive-psf-parameters --site North --telescope LSTN-01 \\
            --model_version 6.0.0 --data PSFcurve_data_v2.txt --plot_all --test

    The output is saved in simtools-output/derive_psf_parameters.

    Expected final print-out message:

    .. code-block:: console

        Best parameters:
        mirror_reflection_random_angle = [0.006, 0.133, 0.005]
        mirror_align_random_horizontal = [0.005, 28.0, 0.0, 0.0]
        mirror_align_random_vertical = [0.005, 28.0, 0.0, 0.0]

"""
import logging
from collections import OrderedDict

import astropy.units as u
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages

import simtools.utils.general as gen
from simtools.configuration import configurator
from simtools.io_operations import io_handler
from simtools.model.telescope_model import TelescopeModel
from simtools.ray_tracing.ray_tracing import RayTracing
from simtools.visualization import visualize


[docs] def load_data(data_file): """ Load data from a text file containing cumulative PSF measurements. Parameters ---------- data_file : str Name of the data file with the measured cumulative PSF. Returns ------- numpy.ndarray Loaded and processed data from the file. """ radius_cm = "Radius [cm]" cumulative_psf = "Cumulative PSF" d_type = {"names": (radius_cm, cumulative_psf), "formats": ("f8", "f8")} data = np.loadtxt(data_file, dtype=d_type, usecols=(0, 2)) data[radius_cm] *= 0.1 data[cumulative_psf] /= np.max(np.abs(data[cumulative_psf])) return data
def _parse(): config = configurator.Configurator( description=( "Derive mirror_reflection_random_angle, mirror_align_random_horizontal " "and mirror_align_random_vertical using cumulative PSF measurement." ) ) config.parser.add_argument( "--src_distance", help="Source distance in km", type=float, default=10, ) config.parser.add_argument("--zenith", help="Zenith angle in deg", type=float, default=20) config.parser.add_argument( "--data", help="Data file name with the measured PSF vs radius [cm]", type=str ) config.parser.add_argument( "--plot_all", help=( "On: plot cumulative PSF for all tested combinations, " "Off: plot it only for the best set of values" ), action="store_true", ) config.parser.add_argument( "--fixed", help=("Keep the first entry of mirror_reflection_random_angle fixed."), action="store_true", ) return config.initialize(db_config=True, simulation_model="telescope")
[docs] def add_parameters( all_parameters, mirror_reflection, mirror_align, mirror_reflection_fraction=0.15, mirror_reflection_2=0.035, ): """ Transform and add parameters to the all_parameters list. Parameters ---------- mirror_reflection : float The random angle of mirror reflection. mirror_align : float The random angle for mirror alignment (both horizontal and vertical). mirror_reflection_fraction : float, optional The fraction of the mirror reflection. Default is 0.15. mirror_reflection_2 : float, optional A secondary random angle for mirror reflection. Default is 0.035. Returns ------- None Updates the all_parameters list in place. """ # If we want to start from values different than the ones currently in the model: # align = 0.0046 # pars_to_change = { # 'mirror_reflection_random_angle': '0.0075 0.125 0.0037', # 'mirror_align_random_horizontal': f'{align} 28 0 0', # 'mirror_align_random_vertical': f'{align} 28 0 0', # } # tel_model.change_multiple_parameters(**pars_to_change) pars = { "mirror_reflection_random_angle": [ mirror_reflection, mirror_reflection_fraction, mirror_reflection_2, ], "mirror_align_random_horizontal": [mirror_align, 28.0, 0.0, 0.0], "mirror_align_random_vertical": [mirror_align, 28.0, 0.0, 0.0], } all_parameters.append(pars)
[docs] def get_previous_values(tel_model, logger): """ Retrieve previous parameter values from the telescope model. Parameters ---------- tel_model : TelescopeModel Telescope model object. logger : logging.Logger Logger object for logging messages. Returns ------- tuple Tuple containing the previous values of mirror_reflection_random_angle (first entry), mirror_reflection_fraction, second entry), mirror_reflection_random_angle (third entry), and mirror_align_random_horizontal/vertical. """ split_par = tel_model.get_parameter_value("mirror_reflection_random_angle") mrra_0, mfr_0, mrra2_0 = split_par[0], split_par[1], split_par[2] mar_0 = tel_model.get_parameter_value("mirror_align_random_horizontal")[0] logger.debug( "Previous parameter values:\n" f"MRRA = {mrra_0!s}\n" f"MRF = {mfr_0!s}\n" f"MRRA2 = {mrra2_0!s}\n" f"MAR = {mar_0!s}\n" ) return mrra_0, mfr_0, mrra2_0, mar_0
[docs] def generate_random_parameters( all_parameters, n_runs, args_dict, mrra_0, mfr_0, mrra2_0, mar_0, logger ): """ Generate random parameters for tuning. Parameters ---------- all_parameters : list List to store all parameter sets. n_runs : int Number of random parameter combinations to test. args_dict : dict Dictionary containing parsed command-line arguments. mrra_0 : float Initial value of mirror_reflection_random_angle. mfr_0 : float Initial value of mirror_reflection_fraction. mrra2_0 : float Initial value of the second mirror_reflection_random_angle. mar_0 : float Initial value of mirror_align_random_horizontal/vertical. logger : logging.Logger Logger object for logging messages. """ # Range around the previous values are hardcoded # Number of runs is hardcoded if args_dict["fixed"]: logger.debug("fixed=True - First entry of mirror_reflection_random_angle is kept fixed.") for _ in range(n_runs): mrra_range = 0.004 if not args_dict["fixed"] else 0 mrf_range = 0.1 mrra2_range = 0.03 mar_range = 0.005 rng = np.random.default_rng() mrra = rng.uniform(max(mrra_0 - mrra_range, 0), mrra_0 + mrra_range) mrf = rng.uniform(max(mfr_0 - mrf_range, 0), mfr_0 + mrf_range) mrra2 = rng.uniform(max(mrra2_0 - mrra2_range, 0), mrra2_0 + mrra2_range) mar = rng.uniform(max(mar_0 - mar_range, 0), mar_0 + mar_range) add_parameters(all_parameters, mrra, mar, mrf, mrra2)
[docs] def load_and_process_data(args_dict): """ Load and process data if specified in the command-line arguments. Returns ------- - data_to_plot: OrderedDict containing loaded and processed data. - radius: Radius data from loaded data (if available). """ data_to_plot = OrderedDict() radius = None if args_dict["data"] is not None: data_file = gen.find_file(args_dict["data"], args_dict["model_path"]) data_to_plot["measured"] = load_data(data_file) radius = data_to_plot["measured"]["Radius [cm]"] return data_to_plot, radius
[docs] def calculate_rmsd(data, sim): """Calculate Root Mean Squared Deviation to be used as metric to find the best parameters.""" return np.sqrt(np.mean((data - sim) ** 2))
[docs] def run_pars(tel_model, args_dict, pars, data_to_plot, radius, pdf_pages): """ Run the tuning for one set of parameters, add a plot to the pdfPages and return RMSD and D80. Plotting is optional (if plot=True). """ cumulative_psf = "Cumulative PSF" if pars is not None: tel_model.change_multiple_parameters(**pars) else: raise ValueError("No best parameters found") ray = RayTracing( telescope_model=tel_model, simtel_path=args_dict["simtel_path"], zenith_angle=args_dict["zenith"] * u.deg, source_distance=args_dict["src_distance"] * u.km, off_axis_angle=[0.0] * u.deg, ) ray.simulate(test=args_dict["test"], force=True) ray.analyze(force=True, use_rx=False) # Plotting cumulative PSF im = ray.images()[0] d80 = im.get_psf() if radius is not None: # Simulated cumulative PSF data_to_plot["simulated"] = im.get_cumulative_data(radius * u.cm) else: raise ValueError("Radius data is not available.") rmsd = calculate_rmsd( data_to_plot["measured"][cumulative_psf], data_to_plot["simulated"][cumulative_psf] ) if args_dict["plot_all"]: fig = visualize.plot_1d( data_to_plot, plot_difference=True, no_markers=True, ) ax = fig.get_axes()[0] ax.set_ylim(0, 1.05) ax.set_title( f"refl_rnd={pars['mirror_reflection_random_angle']}, " f"align_rnd={pars['mirror_align_random_vertical']}" ) ax.text( 0.8, 0.3, f"D80 = {d80:.3f} cm\nRMSD = {rmsd:.4f}", verticalalignment="center", horizontalalignment="center", transform=ax.transAxes, ) plt.tight_layout() pdf_pages.savefig(fig) plt.clf() return d80, rmsd
[docs] def find_best_parameters(all_parameters, tel_model, args_dict, data_to_plot, radius, pdf_pages): """ Find the best parameters from all parameter sets. Returns ------- - Tuple of best parameters and their D80 value. """ min_rmsd = 100 best_pars = None for pars in all_parameters: _, rmsd = run_pars(tel_model, args_dict, pars, data_to_plot, radius, pdf_pages) if rmsd < min_rmsd: min_rmsd = rmsd best_pars = pars return best_pars, min_rmsd
def main(): # noqa: D103 args_dict, db_config = _parse() label = "tune_psf" logger = logging.getLogger() logger.setLevel(gen.get_log_level_from_user(args_dict["log_level"])) # Output directory to save files related directly to this app _io_handler = io_handler.IOHandler() output_dir = _io_handler.get_output_directory(label, sub_dir="application-plots") tel_model = TelescopeModel( site=args_dict["site"], telescope_name=args_dict["telescope"], mongo_db_config=db_config, model_version=args_dict["model_version"], label=label, ) all_parameters = [] mrra_0, mfr_0, mrra2_0, mar_0 = get_previous_values(tel_model, logger) n_runs = 5 if args_dict["test"] else 50 generate_random_parameters( all_parameters, n_runs, args_dict, mrra_0, mfr_0, mrra2_0, mar_0, logger ) data_to_plot, radius = load_and_process_data(args_dict) # Preparing figure name plot_file_name = "_".join((label, tel_model.name + ".pdf")) plot_file = output_dir.joinpath(plot_file_name) pdf_pages = PdfPages(plot_file) best_pars, _ = find_best_parameters( all_parameters, tel_model, args_dict, data_to_plot, radius, pdf_pages ) # Rerunning and plotting the best pars run_pars(tel_model, args_dict, best_pars, data_to_plot, radius, pdf_pages) plt.close() pdf_pages.close() # Printing the results print("Best parameters:") for par, value in best_pars.items(): print(f"{par} = {value}") if __name__ == "__main__": main()