#!/usr/bin/python3
r"""
Simulate calibration devices using the light emission package.
Run the application in the command line.
There are two ways this application can be executed:
1. Illuminator at varying distances.
2. Illuminator and telescopes at fixed positions as defined in the layout.
Example Usage
-------------
1. Simulate light emission with varying distances:
.. code-block:: console
simtools-simulate-illuminator --telescope MSTN-04 --site North \
--illuminator ILLN-01 --light_source_setup variable \
--model_version 6.0.0
2. Simulate light emission with telescopes at fixed positions according to the layout:
.. code-block:: console
simtools-simulate-illuminator --telescope MSTN-04 --site North \
--illuminator ILLN-01 --light_source_setup layout \
--model_version 6.0.0
Command Line Arguments
----------------------
telescope (str, required)
Telescope model name (e.g. LSTN-01, SSTS-design, SSTS-25, ...)
site (str, required)
Site name (North or South).
illuminator (str, optional)
Illuminator in array, e.g., ILLN-01.
light_source_setup (str, optional)
Select calibration light source positioning/setup:
- "variable" for varying distances.
- "layout" for actual telescope positions.
model_version (str, optional)
Version of the simulation model.
off_axis_angle (float, optional)
Off axis angle for light source direction.
number_events (int, optional)
Number of events to simulate.
Example
-------
Simulate isotropic light source at different distances for the MSTN-04:
.. code-block:: console
simtools-simulate-illuminator --telescope MSTN-04 --site North \
--illuminator ILLN-01 --light_source_setup variable \
--model_version 6.0.0 ```
Expected Output:
.. code-block:: console
light-emission package stage:
File '/workdir/external/simtools/simtools-output/light_emission/model/
atmprof_ecmwf_north_winter_fixed.dat' registered for atmospheric profile 99.
Atmospheric profile 99 to be read from file '/workdir/external/simtools/
simtools-output/light_emission/model/atmprof_ecmwf_north_winter_fixed.dat'.
Atmospheric profile 99 with 55 levels read from file /workdir/external/
simtools/simtools-output/light_emission/model/atmprof_ecmwf_north_winter_fixed.dat
Initialize atmosphere ranging from 0.000 to 120.000 km a.s.l.
IACT control parameter line: print_events 999 10 100 1000 0
Case 1: 1 event with 1e+10 photons.
Using IACT/ATMO package version 1.67 (2023-11-10) for CORSIKA 6.999
Output file /workdir/external/simtools/simtools-output/light_emission/xyzls.iact.gz
not yet created.
Telescope output file: '/workdir/external/simtools/simtools-output/
light_emission/xyzls.iact.gz'
....
....
Sim_telarray stage:
Telescope 1 triggered (1/0/0/0, mask 1), summation from 36 to 95 of 105
Event end data has been found.
Shower of 0.0000 TeV energy was seen in 1 of 1 cases.
Photon statistics:
All photons: 928518
Used photons: 928518
Not absorbed/max. Q.E.: 189560
Reflected on mirror: 26815
Camera hit: 25574
Pixel hit: 25574
Detected: 20998
Trigger statistics:
Tel. triggered: 1
Tel. + array: 1
Early readout: 0
Late readout: 0
Finish data conversion ...
Writing 13 histograms to output file.
"""
import logging
from pathlib import Path
import astropy.units as u
import simtools.utils.general as gen
from simtools.configuration import configurator
from simtools.model.calibration_model import CalibrationModel
from simtools.model.model_utils import initialize_simulation_models
from simtools.simtel.simulator_light_emission import SimulatorLightEmission
def _parse(label):
"""Parse command line configuration."""
config = configurator.Configurator(
label=label,
description=(
"Simulate the light emission by an artificial light source for calibration purposes."
),
)
config.parser.add_argument(
"--off_axis_angle",
help="Off axis angle for light source direction",
type=float,
default=0.0,
required=False,
)
config.parser.add_argument(
"--light_source_setup",
help="Select calibration light source positioning/setup: \
varying distances (variable), layout positions (layout)",
type=str,
choices=["layout", "variable"],
default=None,
required=True,
)
config.parser.add_argument(
"--distances_ls",
help="Light source distance in m (Example --distances_ls 800 1200)",
nargs="+",
required=False,
)
config.parser.add_argument(
"--illuminator",
help="Illuminator in array, i.e. ILLN-design",
type=str,
default=None,
required=True,
)
config.parser.add_argument(
"--number_events",
help="Number of events to simulate",
type=int,
default=1,
required=False,
)
config.parser.add_argument(
"--output_prefix",
help="Prefix for output files (default: empty)",
type=str,
default=None,
required=False,
)
return config.initialize(
db_config=True,
simulation_model=["telescope", "model_version"],
require_command_line=True,
)
[docs]
def light_emission_configs(args_dict):
"""
Define default light emission configurations.
Predefined angular distribution names not requiring to read any table are
"Isotropic", "Gauss:<rms>", "Rayleigh", "Cone:<angle>", and "FilledCone:<angle>", "Parallel",
with all angles given in degrees, all with respect to the given direction vector
(vertically downwards if missing). If the light source has a non-zero length and velocity
(in units of the vacuum speed of light), it is handled as a moving source,
in the given direction.
Parameters
----------
args_dict: dict
Dictionary with command line arguments.
args_dict: dict
Dictionary with command line arguments.
Returns
-------
default_config: dict
Default light emission configuration.
"""
if args_dict["light_source_setup"] == "variable":
cfg = {
"x_pos": {"len": 1, "unit": u.Unit("cm"), "default": 0 * u.cm, "names": ["x_position"]},
"y_pos": {"len": 1, "unit": u.Unit("cm"), "default": 0 * u.cm, "names": ["y_position"]},
"z_pos": {
"len": 1,
"unit": u.Unit("cm"),
"default": [i * 100 for i in [200, 300, 400, 600, 800, 1200, 2000, 4000]] * u.cm,
"names": ["z_position"],
},
"direction": {
"len": 3,
"unit": u.dimensionless_unscaled,
"default": [0, 0, -1],
"names": ["direction", "cx,cy,cz"],
},
}
args_dict.update(cfg)
return args_dict
return args_dict
[docs]
def main():
"""Simulate light emission."""
label = Path(__file__).stem
args_dict, db_config = _parse(label)
light_emission_config = light_emission_configs(args_dict)
print(light_emission_config)
logger = logging.getLogger()
logger.setLevel(gen.get_log_level_from_user(args_dict["log_level"]))
telescope_model, site_model = initialize_simulation_models(
label=label,
db_config=db_config,
site=args_dict["site"],
telescope_name=args_dict["telescope"],
model_version=args_dict["model_version"],
)
calibration_model = CalibrationModel(
site=args_dict["site"],
calibration_device_model_name=args_dict["illuminator"],
mongo_db_config=db_config,
model_version=args_dict["model_version"],
label=label,
)
light_source = SimulatorLightEmission(
telescope_model=telescope_model,
calibration_model=calibration_model,
site_model=site_model,
light_emission_config=light_emission_config,
light_source_setup=args_dict["light_source_setup"],
simtel_path=args_dict["simtel_path"],
light_source_type="illuminator",
label=label,
test=args_dict["test"],
)
if args_dict["light_source_setup"] == "variable":
outputs = light_source.simulate_variable_distances(args_dict)
elif args_dict["light_source_setup"] == "layout":
outputs = light_source.simulate_layout_positions(args_dict)
else:
outputs = []
if outputs:
logger.info("Simulation outputs:\n%s", "\n".join(str(p) for p in outputs))
if __name__ == "__main__":
main()