Source code for simulate_light_emission

#!/usr/bin/python3

r"""
Simulate calibration devices using the light emission package.

Run the application in the command line.
There are two ways this application can be executed:

1. Illuminator at varying distances.
2. Illuminator and telescopes at fixed positions as defined in the layout.

Example Usage
-------------

1. Simulate light emission with varying distances:

    .. code-block:: console

        simtools-simulate-light-emission --telescope MSTN-04 --site North \
        --illuminator ILLN-01 --light_source_setup variable \
        --model_version 6.0.0 --light_source_type led

2. Simulate light emission with telescopes at fixed positions according to the layout:

    .. code-block:: console

        simtools-simulate-light-emission --telescope MSTN-04 --site North \
        --illuminator ILLN-01 --light_source_setup layout \
        --model_version 6.0.0 \
        --light_source_type led

Command Line Arguments
----------------------
telescope (str, required)
    Telescope model name (e.g. LSTN-01, SSTS-design, SSTS-25, ...)
site (str, required)
    Site name (North or South).
illuminator (str, optional)
    Illuminator in array, e.g., ILLN-01.
light_source_setup (str, optional)
    Select calibration light source positioning/setup:
    - "variable" for varying distances.
    - "layout" for actual telescope positions.
model_version (str, optional)
    Version of the simulation model.
light_source_type (str, optional)
    Select calibration light source type: led (default) or laser.
    This changes the pre-compiled (simtel_array) application that is used to run the
    light emission package with. Currently we use xyzls (laser), and ls-beam can be
    accessed by using the laser option.
off_axis_angle (float, optional)
    Off axis angle for light source direction.
plot (flag, optional)
    Produce a multiple pages pdf file with the image plots.


Example
-------

Simulate isotropic light source at different distances for the MSTN-04:

.. code-block:: console

    simtools-simulate-light-emission --telescope MSTN-04 --site North \
    --illuminator ILLN-01 --light_source_setup variable \
    --model_version 6.0.0 --light_source_type led    ```

Expected Output:

.. code-block:: console

    light-emission package stage:
    File '/workdir/external/simtools/simtools-output/light_emission/model/
        atmprof_ecmwf_north_winter_fixed.dat' registered for atmospheric profile 99.
    Atmospheric profile 99 to be read from file '/workdir/external/simtools/
        simtools-output/light_emission/model/atmprof_ecmwf_north_winter_fixed.dat'.
    Atmospheric profile 99 with 55 levels read from file /workdir/external/
        simtools/simtools-output/light_emission/model/atmprof_ecmwf_north_winter_fixed.dat
    Initialize atmosphere ranging from 0.000 to 120.000 km a.s.l.
    IACT control parameter line: print_events 999 10 100 1000 0
    Case 1: 1 event with 1e+10 photons.
    Using IACT/ATMO package version 1.67 (2023-11-10) for CORSIKA 6.999
    Output file /workdir/external/simtools/simtools-output/light_emission/xyzls.iact.gz
        not yet created.
    Telescope output file: '/workdir/external/simtools/simtools-output/
        light_emission/xyzls.iact.gz'
    ....
    ....
    Sim_telarray stage:
    Telescope 1 triggered (1/0/0/0, mask 1), summation from 36 to 95 of 105
    Event end data has been found.
    Shower of 0.0000 TeV energy was seen in 1 of 1 cases.
    Photon statistics:
    All photons:               928518
    Used photons:              928518
    Not absorbed/max. Q.E.:    189560
    Reflected on mirror:        26815
    Camera hit:                 25574
    Pixel hit:                  25574
    Detected:                   20998
    Trigger statistics:
    Tel. triggered:             1
    Tel. + array:               1
    Early readout:              0
    Late readout:               0
    Finish data conversion ...
    Writing 13 histograms to output file.

"""

import logging
from pathlib import Path

import astropy.units as u

import simtools.utils.general as gen
from simtools.configuration import configurator
from simtools.model.calibration_model import CalibrationModel
from simtools.model.site_model import SiteModel
from simtools.model.telescope_model import TelescopeModel
from simtools.simtel.simulator_light_emission import SimulatorLightEmission


def _parse(label):
    """Parse command line configuration."""
    config = configurator.Configurator(
        label=label,
        description=(
            "Simulate the light emission by an artificial light source for calibration purposes."
        ),
    )
    config.parser.add_argument(
        "--off_axis_angle",
        help="Off axis angle for light source direction",
        type=float,
        default=0.0,
        required=False,
    )
    config.parser.add_argument(
        "--plot",
        help="Produce a multiple pages pdf file with the image plots.",
        action="store_true",
    )
    config.parser.add_argument(
        "--light_source_type",
        help="Select calibration light source type: led or laser",
        type=str,
        default="led",
        choices=["led", "laser"],
        required=False,
    )
    config.parser.add_argument(
        "--light_source_setup",
        help="Select calibration light source positioning/setup: \
              varying distances (variable), layout positions (layout)",
        type=str,
        choices=["layout", "variable"],
        default=None,
        required=True,
    )
    config.parser.add_argument(
        "--distances_ls",
        help="Light source distance in m (Example --distances_ls 800 1200)",
        nargs="+",
        required=False,
    )
    config.parser.add_argument(
        "--illuminator",
        help="Illuminator in array, i.e. ILLN-design",
        type=str,
        default=None,
        required=True,
    )
    config.parser.add_argument(
        "--return_cleaned",
        help="ctapipe, if image should be cleaned, \
              notice as well image cleaning parameters",
        type=str,
        default=False,
        required=False,
    )
    config.parser.add_argument(
        "--picture_thresh",
        help="ctapipe, threshold above which all pixels are retained",
        type=int,
        required=False,
    )
    config.parser.add_argument(
        "--boundary_thresh",
        help="ctapipe, threshold above which pixels are retained if\
              they have a neighbor already above the picture_thresh",
        type=int,
        required=False,
    )
    config.parser.add_argument(
        "--min_neighbors",
        help="ctapipe, A picture pixel survives cleaning only if it has at\
              least this number of picture neighbors. This has no effect in\
              case keep_isolated_pixels is True",
        type=int,
        required=False,
    )
    config.parser.add_argument(
        "--level",
        help="read 5",
        type=int,
        default=5,
        required=False,
    )
    config.parser.add_argument(
        "--integration_window",
        help="ctapipe, A picture pixel survives cleaning only if it has at\
              least this number of picture neighbors. This has no effect in\
              case keep_isolated_pixels is True",
        nargs="*",
        default=["7", "3"],
        required=False,
    )
    return config.initialize(
        db_config=True,
        simulation_model=["telescope", "model_version"],
        require_command_line=True,
    )


[docs] def light_emission_configs(le_application, args_dict): """ Define default light emission configurations. Predefined angular distribution names not requiring to read any table are "Isotropic", "Gauss:<rms>", "Rayleigh", "Cone:<angle>", and "FilledCone:<angle>", "Parallel", with all angles given in degrees, all with respect to the given direction vector (vertically downwards if missing). If the light source has a non-zero length and velocity (in units of the vacuum speed of light), it is handled as a moving source, in the given direction. Parameters ---------- le_application: str Light emission application. args_dict: dict Dictionary with command line arguments. Returns ------- default_config: dict Default light emission configuration. """ if le_application in ("xyzls", "ls-beam") and args_dict["light_source_setup"] == "variable": return { "x_pos": {"len": 1, "unit": u.Unit("cm"), "default": 0 * u.cm, "names": ["x_position"]}, "y_pos": {"len": 1, "unit": u.Unit("cm"), "default": 0 * u.cm, "names": ["y_position"]}, "z_pos": { "len": 1, "unit": u.Unit("cm"), "default": [i * 100 for i in [200, 300, 400, 600, 800, 1200, 2000, 4000]] * u.cm, "names": ["z_position"], }, "direction": { "len": 3, "unit": u.dimensionless_unscaled, "default": [0, 0, -1], "names": ["direction", "cx,cy,cz"], }, } return {}
[docs] def select_application(args_dict): """ Select sim_telarray application for light emission simulations. Parameters ---------- args_dict: dict Dictionary with command line arguments. Returns ------- le_application: str Light emission application. """ if args_dict["light_source_type"] == "led": return "xyzls", args_dict["light_source_setup"] if args_dict["light_source_type"] == "laser": return "ls-beam", args_dict["light_source_setup"] return None, args_dict["light_source_setup"]
[docs] def main(): """Simulate light emission.""" label = Path(__file__).stem args_dict, db_config = _parse(label) le_application = select_application(args_dict) light_emission_config = light_emission_configs(le_application[0], args_dict) logger = logging.getLogger() logger.setLevel(gen.get_log_level_from_user(args_dict["log_level"])) telescope_model = TelescopeModel( site=args_dict["site"], telescope_name=args_dict["telescope"], mongo_db_config=db_config, model_version=args_dict["model_version"], label=label, ) calibration_model = CalibrationModel( site=args_dict["site"], calibration_device_model_name=args_dict["illuminator"], mongo_db_config=db_config, model_version=args_dict["model_version"], label=label, ) site_model = SiteModel( site=args_dict["site"], mongo_db_config=db_config, model_version=args_dict["model_version"], label=label, ) light_source = SimulatorLightEmission( telescope_model=telescope_model, calibration_model=calibration_model, site_model=site_model, light_emission_config=light_emission_config, le_application=le_application, simtel_path=args_dict["simtel_path"], light_source_type=args_dict["light_source_type"], label=label, ) if args_dict["light_source_setup"] == "variable": light_source.simulate_variable_distances(args_dict) elif args_dict["light_source_setup"] == "layout": light_source.simulate_layout_positions(args_dict)
if __name__ == "__main__": main()