#!/usr/bin/python3
"""Functions for plotting mirror panel layout information."""
import logging
from pathlib import Path
import matplotlib.colors as mcolors
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.collections import PatchCollection
from simtools.io import io_handler
from simtools.model.mirrors import Mirrors
from simtools.model.telescope_model import TelescopeModel
from simtools.visualization import visualize
logger = logging.getLogger(__name__)
PATCH_STYLE = {"alpha": 0.8, "edgecolor": "black", "facecolor": "dodgerblue"}
LABEL_STYLE = {"ha": "center", "va": "center", "fontsize": 10, "color": "white", "weight": "bold"}
STATS_BOX_STYLE = {"boxstyle": "round", "facecolor": "wheat", "alpha": 0.8}
OBSERVER_TEXT = "for an observer facing the mirrors"
def _rotate_coordinates_clockwise_90(x_pos, y_pos):
"""
Rotate coordinates 90 degrees clockwise for observer-facing view.
Plots are rotated by 90 degrees clockwise to present the point of view of a
person standing on the camera platform.
Important: Any transformation applied to one mirror list must be applied consistently to
all (primary) mirror lists. Inconsistent transformations would result in incorrect mirror
configurations when running sim_telarray simulations.
"""
return y_pos, -x_pos
def _detect_segmentation_type(data_file_path):
"""
Detect the type of segmentation file (ring, shape, or standard).
Parameters
----------
data_file_path : Path
Path to the segmentation data file
Returns
-------
str
One of "ring", "shape", or "standard"
"""
with open(data_file_path, encoding="utf-8") as f:
for line in f:
line_lower = line.strip().lower()
if line_lower.startswith("#") or not line_lower:
continue
if line_lower.startswith("ring"):
return "ring"
if line_lower.startswith(("hex", "yhex")):
return "shape"
return "standard"
[docs]
def plot(config, output_file, db_config=None):
"""
Plot mirror panel layout based on configuration.
Parameters
----------
config : dict
Configuration dictionary containing:
- parameter: str, parameter name (e.g., "mirror_list", "primary_mirror_segmentation")
- site: str, site name (e.g., "North", "South")
- telescope: str, telescope name (e.g., "LSTN-01")
- parameter_version: str, optional, parameter version
- model_version: str, optional, model version
- title: str, optional, plot title
output_file : str or Path
Path where to save the plot (without extension)
db_config : dict, optional
Database configuration dictionary
Returns
-------
None
The function saves the plot to the specified output file.
"""
tel_model = TelescopeModel(
site=config["site"],
telescope_name=config["telescope"],
model_version=config.get("model_version"),
db_config=db_config,
ignore_software_version=True,
)
output_path = io_handler.IOHandler().get_output_directory()
parameter_name = config["parameter"]
parameter_value = tel_model.get_parameter_value(parameter_name)
tel_model.export_model_files(destination_path=output_path)
mirror_file = parameter_value
data_file_path = Path(output_path / mirror_file)
parameter_type = config["parameter"]
if parameter_type in ("primary_mirror_segmentation", "secondary_mirror_segmentation"):
segmentation_type = _detect_segmentation_type(data_file_path)
if segmentation_type == "ring":
fig = plot_mirror_ring_segmentation(
data_file_path=data_file_path,
telescope_model_name=config["telescope"],
parameter_type=parameter_type,
)
elif segmentation_type == "shape":
fig = plot_mirror_shape_segmentation(
data_file_path=data_file_path,
telescope_model_name=config["telescope"],
parameter_type=parameter_type,
)
else:
fig = plot_mirror_segmentation(
data_file_path=data_file_path,
telescope_model_name=config["telescope"],
parameter_type=parameter_type,
)
else:
mirrors = Mirrors(mirror_list_file=data_file_path)
fig = plot_mirror_layout(
mirrors=mirrors,
mirror_file_path=data_file_path,
telescope_model_name=config["telescope"],
)
visualize.save_figure(fig, output_file)
plt.close(fig)
[docs]
def plot_mirror_layout(mirrors, mirror_file_path, telescope_model_name):
"""
Plot the mirror panel layout from a Mirrors object.
Parameters
----------
mirrors : Mirrors
Mirrors object containing mirror panel data including positions,
diameters, focal lengths, and shape types
mirror_file_path : Path or str
Path to the mirror list file
telescope_model_name : str
Name of the telescope model (e.g., "LSTN-01", "MSTN-01")
Returns
-------
matplotlib.figure.Figure
The generated figure object
"""
logger.info(f"Plotting mirror layout for {telescope_model_name}")
fig, ax = plt.subplots(figsize=(10, 10))
x_pos = mirrors.mirror_table["mirror_x"].to("cm").value
y_pos = mirrors.mirror_table["mirror_y"].to("cm").value
x_pos, y_pos = _rotate_coordinates_clockwise_90(x_pos, y_pos)
diameter = mirrors.mirror_diameter.to("cm").value
shape_type = mirrors.shape_type
focal_lengths = mirrors.mirror_table["focal_length"].to("cm").value
mirror_ids = (
mirrors.mirror_table["mirror_panel_id"]
if "mirror_panel_id" in mirrors.mirror_table.colnames
else list(range(len(x_pos)))
)
# MST mirrors are numbered from 1 at the bottom to N at the top
if telescope_model_name and "MST" in telescope_model_name.upper():
n_mirrors = len(mirror_ids)
mirror_ids = [n_mirrors - mid for mid in mirror_ids]
patches, colors = _create_mirror_patches(x_pos, y_pos, diameter, shape_type, focal_lengths)
collection = PatchCollection(
patches,
cmap="viridis",
edgecolor="black",
linewidth=0.5,
)
collection.set_array(np.array(colors))
ax.add_collection(collection)
_add_mirror_labels(ax, x_pos, y_pos, mirror_ids, max_labels=20)
_configure_mirror_plot(ax, x_pos, y_pos)
cbar = plt.colorbar(collection, ax=ax, pad=0.02)
cbar.set_label("Focal length [cm]", fontsize=14)
_add_mirror_statistics(ax, mirrors, mirror_file_path, x_pos, y_pos, diameter)
return fig
[docs]
def plot_mirror_segmentation(data_file_path, telescope_model_name, parameter_type):
"""
Plot mirror segmentation layout from a segmentation file.
Parameters
----------
data_file_path : Path or str
Path to the segmentation data file containing mirror segment positions,
diameters, and shape types in standard numeric format
telescope_model_name : str
Name of the telescope model (e.g., "LSTN-01", "MSTN-01")
parameter_type : str
Type of segmentation parameter (e.g., "primary_mirror_segmentation",
"secondary_mirror_segmentation")
Returns
-------
matplotlib.figure.Figure
The generated figure object
"""
logger.info(f"Plotting {parameter_type} for {telescope_model_name}")
segmentation_data = _read_segmentation_file(data_file_path)
fig, ax = plt.subplots(figsize=(10, 10))
x_pos = segmentation_data["x"]
y_pos = segmentation_data["y"]
x_pos, y_pos = _rotate_coordinates_clockwise_90(x_pos, y_pos)
diameter = segmentation_data["diameter"]
shape_type = segmentation_data["shape_type"]
segment_ids = segmentation_data["segment_ids"]
patches, colors = _create_mirror_patches(x_pos, y_pos, diameter, shape_type, segment_ids)
collection = PatchCollection(
patches,
cmap="tab20",
edgecolor="black",
linewidth=0.8,
)
collection.set_array(np.array(colors))
ax.add_collection(collection)
_add_mirror_labels(ax, x_pos, y_pos, segment_ids, max_labels=30)
_configure_mirror_plot(ax, x_pos, y_pos)
cbar = plt.colorbar(collection, ax=ax, pad=0.02)
cbar.set_label("Segment ID", fontsize=14)
n_segments = len(set(segment_ids))
stats_text = (
f"Number of segments: {len(x_pos)}\n"
f"Number of segment groups: {n_segments}\n"
f"Segment diameter: {diameter:.1f} cm"
)
ax.text(
0.02,
0.98,
stats_text,
transform=ax.transAxes,
fontsize=11,
verticalalignment="top",
bbox=STATS_BOX_STYLE,
)
return fig
def _create_mirror_patches(x_pos, y_pos, diameter, shape_type, color_values):
"""Create matplotlib patches for mirror panels or segments."""
patches = [
_create_single_mirror_patch(x, y, diameter, shape_type) for x, y in zip(x_pos, y_pos)
]
return patches, list(color_values)
def _read_segmentation_file(data_file_path):
"""Read mirror segmentation file and extract segment information."""
x_pos = []
y_pos = []
diameter = None
shape_type = None
segment_ids = []
with open(data_file_path, encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line or line.startswith("#"):
continue
parts = line.split()
if len(parts) < 5:
continue
try:
x_pos.append(float(parts[0]))
y_pos.append(float(parts[1]))
except ValueError:
continue
diameter = _extract_diameter(parts, diameter)
shape_type = _extract_shape_type(parts, shape_type)
segment_ids.append(_extract_segment_id(parts, len(segment_ids)))
if len(x_pos) == 0:
logger.warning(f"No valid numeric data found in segmentation file: {data_file_path}")
return {
"x": np.array(x_pos),
"y": np.array(y_pos),
"diameter": diameter if diameter is not None else 150.0,
"shape_type": shape_type if shape_type is not None else 3,
"segment_ids": segment_ids,
}
def _extract_diameter(parts, current_diameter):
"""Extract diameter from parts or return current value."""
return float(parts[2]) if current_diameter is None else current_diameter
def _extract_shape_type(parts, current_shape_type):
"""Extract shape type from parts or return current value."""
return int(parts[4]) if current_shape_type is None else current_shape_type
def _extract_segment_id(parts, default_id):
"""Extract segment ID from parts or return default."""
if len(parts) >= 8:
seg_id_str = parts[7].split("=")[-1] if "=" in parts[7] else parts[7]
return int("".join(filter(str.isdigit, seg_id_str)))
return default_id
def _create_single_mirror_patch(x, y, diameter, shape_type):
"""Create a single matplotlib patch for a mirror panel (hexagonal only)."""
base_orientation = 0 if shape_type == 1 else np.pi / 2
# Rotate hexagon counter-clockwise to compensate for clockwise coordinate rotation
orientation = base_orientation - np.pi / 2
return mpatches.RegularPolygon(
(x, y),
numVertices=6,
radius=diameter / np.sqrt(3),
orientation=orientation,
)
def _add_mirror_labels(ax, x_pos, y_pos, mirror_ids, max_labels=20):
"""Add mirror panel ID labels to the plot."""
mirror_data = sorted(zip(mirror_ids, x_pos, y_pos), key=lambda item: item[0])
for i, (mid, x, y) in enumerate(mirror_data):
if i < max_labels:
ax.text(
x,
y,
str(mid),
ha="center",
va="center",
fontsize=6,
color="white",
weight="bold",
)
def _configure_mirror_plot(ax, x_pos, y_pos):
"""Add titles, labels, and limits."""
ax.set_aspect("equal")
if len(x_pos) == 0 or len(y_pos) == 0:
logger.warning("No valid mirror data found for plotting")
ax.set_xlim(-1000, 1000)
ax.set_ylim(-1000, 1000)
ax.text(0, 0, "No valid mirror data", ha="center", va="center", fontsize=14, color="red")
return
x_min, x_max = np.min(x_pos), np.max(x_pos)
y_min, y_max = np.min(y_pos), np.max(y_pos)
x_padding = (x_max - x_min) * 0.15
y_padding = (y_max - y_min) * 0.15
ax.set_xlim(x_min - x_padding, x_max + x_padding)
ax.set_ylim(y_min - y_padding, y_max + y_padding)
plt.xlabel("X position [cm]", fontsize=14)
plt.ylabel("Y position [cm]", fontsize=14)
plt.grid(True, alpha=0.3)
plt.tick_params(axis="both", which="major", labelsize=12)
ax.text(
0.02,
0.02,
OBSERVER_TEXT,
transform=ax.transAxes,
fontsize=10,
ha="left",
va="bottom",
style="italic",
color="black",
)
def _extract_float_after_keyword(line, keyword):
"""Extract first float value after keyword in line."""
if keyword not in line:
return None
try:
part = line.split(keyword, 1)[1] if keyword == "=" else line.split(keyword)[-1]
return float(part.strip().split()[0])
except (ValueError, IndexError):
return None
def _read_mirror_file_metadata(mirror_file_path):
"""Read metadata from mirror .dat file header (Rmax and total surface area)."""
metadata = {}
patterns = [
(("Total surface area:", "Total mirror surface area:"), ":", "total_surface_area"),
(("Rmax =", "Rmax="), "=", "rmax"),
(("mirrors are inside a radius of",), "of", "rmax"),
]
try:
with open(mirror_file_path, encoding="utf-8") as f:
for line in f:
if not line.startswith("#"):
break
for triggers, keyword, key in patterns:
if key not in metadata and any(t in line for t in triggers):
if (val := _extract_float_after_keyword(line, keyword)) is not None:
metadata[key] = val
break
except OSError as e:
logger.warning(f"Could not read mirror file metadata: {e}")
return metadata
def _add_mirror_statistics(ax, mirrors, mirror_file_path, x_pos, y_pos, diameter):
"""Add mirror statistics text to the plot."""
n_mirrors = mirrors.number_of_mirrors
metadata = _read_mirror_file_metadata(mirror_file_path)
max_radius = metadata.get("rmax")
total_area = metadata.get("total_surface_area")
# Calculate values if not available from file
if max_radius is None:
max_radius = np.sqrt(np.max(x_pos**2 + y_pos**2)) / 100.0
if total_area is None:
panel_area = 3 * np.sqrt(3) / 2 * (diameter / 200.0) ** 2
total_area = n_mirrors * panel_area
stats_text = (
f"Number of mirrors: {n_mirrors}\n"
f"Mirror diameter: {diameter:.1f} cm\n"
f"Max radius: {max_radius:.2f} m\n"
f"Total surface area: {total_area:.2f} $m^{2}$"
)
ax.text(
0.02,
0.98,
stats_text,
transform=ax.transAxes,
fontsize=11,
verticalalignment="top",
bbox=STATS_BOX_STYLE,
)
def _read_ring_segmentation_data(data_file_path):
"""Read ring segmentation data from file."""
rings = []
with open(data_file_path, encoding="utf-8") as f:
for line in f:
if not line.startswith("#") and not line.startswith("%"):
if line.lower().startswith("ring"):
parts = line.split()
rings.append(
{
"nseg": int(parts[1].strip()),
"rmin": float(parts[2].strip()),
"rmax": float(parts[3].strip()),
"dphi": float(parts[4].strip()),
"phi0": float(parts[5].strip()),
}
)
return rings
def _plot_single_ring(ax, ring, cmap, color_index):
"""Plot a single ring with its segments."""
rmin, rmax = ring["rmin"], ring["rmax"]
nseg, phi0 = ring["nseg"], ring["phi0"]
dphi = ring["dphi"]
# Angular gap between segments (in degrees) - represents the physical gaps
angular_gap = 0.3 # degrees
if nseg > 1:
dphi_rad = dphi * np.pi / 180
phi0_rad = phi0 * np.pi / 180
gap_rad = angular_gap * np.pi / 180
for i in range(nseg):
theta_i = i * dphi_rad + phi0_rad
# Fill segment with small gap on each side
n_theta = 100
theta_seg = np.linspace(theta_i + gap_rad, theta_i + dphi_rad - gap_rad, n_theta)
color_value = (color_index + i % 10) / 20.0 # Normalize to 0-1
color = cmap(color_value)
ax.fill_between(theta_seg, rmin, rmax, color=color, alpha=0.8)
def _add_ring_radius_label(ax, angle, radius, label_text):
"""Add a radius label at the specified angle and radius."""
ax.text(
angle,
radius,
label_text,
ha="center",
va="center",
fontsize=9,
color="red",
weight="bold",
bbox={"boxstyle": "round,pad=0.3", "facecolor": "white", "alpha": 0.8},
)
[docs]
def plot_mirror_ring_segmentation(data_file_path, telescope_model_name, parameter_type):
"""
Plot mirror ring segmentation layout.
Parameters
----------
data_file_path : Path or str
Path to the segmentation data file containing ring definitions with format:
ring <nseg> <rmin> <rmax> <dphi> <phi0>
telescope_model_name : str
Name of the telescope model (e.g., "LSTN-01", "MSTN-01")
parameter_type : str
Type of segmentation parameter (e.g., "primary_mirror_segmentation",
"secondary_mirror_segmentation")
Returns
-------
matplotlib.figure.Figure or None
The generated figure object, or None if no ring data found
"""
logger.info(f"Plotting ring {parameter_type} for {telescope_model_name}")
rings = _read_ring_segmentation_data(data_file_path)
if not rings:
logger.warning(f"No ring data found in {data_file_path}")
return None
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(10, 10))
cmap = mcolors.LinearSegmentedColormap.from_list("mirror_blue", ["#deebf7", "#3182bd"])
for i, ring in enumerate(rings):
_plot_single_ring(ax, ring, cmap, color_index=i * 10)
max_radius = max(ring["rmax"] for ring in rings)
label_padding = max_radius * 0.04
ax.set_ylim([0, max_radius + label_padding])
ax.set_yticklabels([])
ax.set_rgrids([])
ax.spines["polar"].set_visible(False)
label_angle = 30 * np.pi / 180
for ring in rings:
theta_full = np.linspace(0, 2 * np.pi, 360)
ax.plot(
theta_full,
np.repeat(ring["rmin"], len(theta_full)),
":",
color="gray",
lw=0.8,
alpha=0.5,
)
ax.plot(
theta_full,
np.repeat(ring["rmax"], len(theta_full)),
":",
color="gray",
lw=0.8,
alpha=0.5,
)
_add_ring_radius_label(ax, label_angle, ring["rmin"], f"{ring['rmin']:.3f}")
_add_ring_radius_label(ax, label_angle, ring["rmax"], f"{ring['rmax']:.3f}")
ax.text(
label_angle,
max_radius + label_padding * 2.5,
"[cm]",
ha="center",
va="center",
fontsize=10,
weight="bold",
color="red",
)
if len(rings) == 2:
stats_text = (
f"Inner ring segments: {rings[0]['nseg']}\nOuter ring segments: {rings[1]['nseg']}"
)
else:
stats_lines = [f"Ring {i + 1} segments: {ring['nseg']}" for i, ring in enumerate(rings)]
stats_text = "\n".join(stats_lines)
ax.text(
0.02,
0.98,
stats_text,
transform=ax.transAxes,
fontsize=11,
verticalalignment="top",
bbox=STATS_BOX_STYLE,
)
ax.text(
0.02,
0.02,
OBSERVER_TEXT,
transform=ax.transAxes,
fontsize=10,
ha="left",
va="bottom",
style="italic",
color="black",
)
plt.tight_layout()
return fig
def _parse_segment_id_line(line_stripped):
"""Extract segment ID from a line if it contains segment ID information."""
try:
return int(line_stripped.split()[-1])
except (ValueError, IndexError):
return 0
def _is_skippable_line(line_stripped):
"""Check if line should be skipped (empty or comment)."""
return not line_stripped or line_stripped.startswith(("#", "%"))
def _parse_shape_line(line_stripped, shape_segments, segment_ids, current_segment_id):
"""Parse and append a single shape segmentation line."""
entries = line_stripped.split()
if any(line_stripped.lower().startswith(s) for s in ["hex", "yhex"]) and len(entries) >= 5:
shape_segments.append(
{
"shape": entries[0].lower(),
"x": float(entries[2]),
"y": float(entries[3]),
"diameter": float(entries[4]),
"rotation": float(entries[5]) if len(entries) > 5 else 0.0,
}
)
segment_ids.append(current_segment_id if current_segment_id > 0 else len(shape_segments))
def _read_shape_segmentation_file(data_file_path):
"""
Read shape segmentation file.
Parameters
----------
data_file_path : Path
Path to segmentation file
Returns
-------
tuple
(shape_segments, segment_ids)
"""
shape_segments, segment_ids = [], []
current_segment_id = 0
with open(data_file_path, encoding="utf-8") as f:
for line in f:
line_stripped = line.strip()
if "segment id" in line_stripped.lower():
current_segment_id = _parse_segment_id_line(line_stripped)
elif not _is_skippable_line(line_stripped):
_parse_shape_line(line_stripped, shape_segments, segment_ids, current_segment_id)
return shape_segments, segment_ids
def _add_segment_label(ax, x, y, label):
"""Add a label at the specified position."""
ax.text(x, y, str(label), **LABEL_STYLE)
def _create_shape_patches(ax, shape_segments, segment_ids):
"""
Create patches for shape segments (hexagons).
Parameters
----------
shape_segments : list
List of shape segment dictionaries
segment_ids : list
List of segment IDs
ax : matplotlib.axes.Axes
Axes to add text labels to
Returns
-------
tuple
(patches, maximum_radius)
"""
patches, maximum_radius = [], 0
for i_seg, seg in enumerate(shape_segments):
x, y, diam, rot = seg["x"], seg["y"], seg["diameter"], seg["rotation"]
maximum_radius = max(maximum_radius, abs(x) + diam / 2, abs(y) + diam / 2)
patch = mpatches.RegularPolygon(
(x, y),
numVertices=6,
radius=diam / np.sqrt(3),
orientation=np.deg2rad(rot),
**PATCH_STYLE,
)
patches.append(patch)
label = segment_ids[i_seg] if i_seg < len(segment_ids) else i_seg + 1
_add_segment_label(ax, x, y, label)
return patches, maximum_radius
[docs]
def plot_mirror_shape_segmentation(data_file_path, telescope_model_name, parameter_type):
"""
Plot mirror shape segmentation layout.
Parameters
----------
data_file_path : Path or str
Path to the segmentation data file containing explicit shape definitions
(hex, yhex) with positions, diameters, and rotations
telescope_model_name : str
Name of the telescope model (e.g., "LSTN-01", "MSTN-design")
parameter_type : str
Type of segmentation parameter (e.g., "primary_mirror_segmentation",
"secondary_mirror_segmentation")
Returns
-------
matplotlib.figure.Figure
The generated figure object
"""
logger.info(f"Plotting shape {parameter_type} for {telescope_model_name}")
shape_segments, segment_ids = _read_shape_segmentation_file(data_file_path)
for seg in shape_segments:
seg["x"], seg["y"] = _rotate_coordinates_clockwise_90(seg["x"], seg["y"])
seg["rotation"] = seg["rotation"] - 90
fig, ax = plt.subplots(figsize=(10, 10))
# Create patches for shape segments
all_patches, maximum_radius = _create_shape_patches(ax, shape_segments, segment_ids)
collection = PatchCollection(all_patches, match_original=True)
ax.add_collection(collection)
ax.set_aspect("equal")
padding = maximum_radius * 0.1 if maximum_radius > 0 else 100
ax.set_xlim(-maximum_radius - padding, maximum_radius + padding)
ax.set_ylim(-maximum_radius - padding, maximum_radius + padding)
plt.xlabel("X position [cm]", fontsize=14)
plt.ylabel("Y position [cm]", fontsize=14)
plt.grid(True, alpha=0.3)
plt.tick_params(axis="both", which="major", labelsize=12)
ax.text(
0.02,
0.02,
OBSERVER_TEXT,
transform=ax.transAxes,
fontsize=10,
ha="left",
va="bottom",
style="italic",
color="black",
)
total_segments = len(shape_segments)
if segment_ids and total_segments > 0:
stats_text = f"Number of segments: {len(set(segment_ids))}"
elif total_segments > 0:
stats_text = f"Number of segments: {total_segments}"
else:
stats_text = "No segment data"
ax.text(
0.02,
0.98,
stats_text,
transform=ax.transAxes,
fontsize=11,
verticalalignment="top",
bbox=STATS_BOX_STYLE,
)
return fig