Source code for production_configuration.corsika_limit_calculator

"""Calculate CORSIKA thresholds for energy, radial distance, and viewcone."""

import logging

import astropy.units as u
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm

from simtools.simtel.simtel_io_event_reader import SimtelIOEventDataReader


[docs] class LimitCalculator: """ Compute limits for CORSIKA configuration for energy, radial distance, and viewcone. Event data is read from the reduced MC event data file. Parameters ---------- event_data_file : str Path to the event-data file. array_name : str, optional Name of the telescope array configuration (default is None). telescope_list : list, optional List of telescope IDs to filter the events (default is None). """ def __init__(self, event_data_file, array_name=None, telescope_list=None): """Initialize the LimitCalculator with the given event data file.""" self._logger = logging.getLogger(__name__) self.event_data_file = event_data_file self.array_name = array_name self.telescope_list = telescope_list self.limits = None self.histograms = {} self.file_info = {} self.reader = SimtelIOEventDataReader(event_data_file, telescope_list=telescope_list) def _prepare_limit_data(self, file_info_table): """ Prepare result data structure for limit calculation. Contains both the point in parameter space and the limits derived for that point. Parameters ---------- file_info_table : astropy.table.Table Table containing file information. Returns ------- dict Dictionary containing limits (not yet calculated) and parameter space information. """ self.file_info = self.reader.get_reduced_simulation_file_info(file_info_table) return { "primary_particle": self.file_info["primary_particle"], "zenith": self.file_info["zenith"], "azimuth": self.file_info["azimuth"], "nsb_level": self.file_info["nsb_level"], "array_name": self.array_name, "telescope_ids": self.telescope_list, "lower_energy_limit": None, "upper_radius_limit": None, "viewcone_radius": None, }
[docs] def compute_limits(self, loss_fraction): """ Compute the limits for energy, radial distance, and viewcone. Parameters ---------- loss_fraction : float Fraction of events to be lost. Returns ------- dict Dictionary containing the computed limits. """ self._fill_histograms() self.limits["lower_energy_limit"] = self.compute_lower_energy_limit(loss_fraction) self.limits["upper_radius_limit"] = self.compute_upper_radius_limit(loss_fraction) self.limits["viewcone_radius"] = self.compute_viewcone(loss_fraction) return self.limits
def _fill_histogram_and_bin_edges(self, name, data, bins, hist1d=True): """ Fill histogram and bin edges and it both to histogram dictionary. Adds histogram to existing histogram if it exists, otherwise initializes it. """ if name in self.histograms: if hist1d: bins = self.histograms[f"{name}_bin_edges"] hist, _ = np.histogram(data, bins=bins) self.histograms[name] += hist else: x_bins = self.histograms[f"{name}_bin_x_edges"] y_bins = self.histograms[f"{name}_bin_y_edges"] hist, _, _ = np.histogram2d(data[0], data[1], bins=[x_bins, y_bins]) self.histograms[name] += hist else: if hist1d: hist, bin_edges = np.histogram(data, bins=bins) self.histograms[name] = hist self.histograms[f"{name}_bin_edges"] = bin_edges else: hist, x_edges, y_edges = np.histogram2d(data[0], data[1], bins=bins) self.histograms[name] = hist self.histograms[f"{name}_bin_x_edges"] = x_edges self.histograms[f"{name}_bin_y_edges"] = y_edges def _fill_histograms(self): """ Fill histograms with event data. Involves looping over all event data, and therefore is the slowest part of the limit calculation. Adds the histograms to the histogram dictionary. """ for data_set in self.reader.data_sets: self._logger.info(f"Reading event data from {self.event_data_file} for {data_set}") file_info, _, event_data, triggered_data = self.reader.read_event_data( self.event_data_file, table_name_map=data_set ) self.limits = self.limits if self.limits else self._prepare_limit_data(file_info) self._fill_histogram_and_bin_edges( "energy", event_data.simulated_energy, self.energy_bins ) self._fill_histogram_and_bin_edges( "core_distance", event_data.core_distance_shower, self.core_distance_bins ) self._fill_histogram_and_bin_edges( "angular_distance", triggered_data.angular_distance, self.view_cone_bins ) xy_bins = np.linspace( -1.0 * self.core_distance_bins.max(), self.core_distance_bins.max(), len(self.core_distance_bins), ) self._fill_histogram_and_bin_edges( "shower_cores", (event_data.x_core_shower, event_data.y_core_shower), [xy_bins, xy_bins], hist1d=False, ) self._fill_histogram_and_bin_edges( "core_vs_energy", (event_data.core_distance_shower, event_data.simulated_energy), [self.core_distance_bins, self.energy_bins], hist1d=False, ) self._fill_histogram_and_bin_edges( "angular_distance_vs_energy", (triggered_data.angular_distance, event_data.simulated_energy), [self.view_cone_bins, self.energy_bins], hist1d=False, ) def _compute_limits(self, hist, bin_edges, loss_fraction, limit_type="lower"): """ Compute the limits based on the loss fraction. Add or subtract one bin to be on the safe side of the limit. Parameters ---------- hist : np.ndarray 1D histogram array. bin_edges : np.ndarray Array of bin edges. loss_fraction : float Fraction of events to be lost. limit_type : str, optional Type of limit ('lower' or 'upper'). Default is 'lower'. Returns ------- float Bin edge value corresponding to the threshold. """ total_events = np.sum(hist) threshold = (1 - loss_fraction) * total_events if limit_type == "upper": cum = np.cumsum(hist) idx = np.searchsorted(cum, threshold) + 1 return bin_edges[min(idx, len(bin_edges) - 1)] if limit_type == "lower": cum = np.cumsum(hist[::-1]) idx = np.searchsorted(cum, threshold) + 1 return bin_edges[max(len(bin_edges) - 1 - idx, 0)] raise ValueError("limit_type must be 'lower' or 'upper'") @property def energy_bins(self): """Return bins for the energy histogram.""" return np.logspace( np.log10(self.file_info.get("energy_min", 1.0e-3 * u.TeV).to("TeV").value), np.log10(self.file_info.get("energy_max", 1.0e3 * u.TeV).to("TeV").value), 100, )
[docs] def compute_lower_energy_limit(self, loss_fraction): """ Compute the lower energy limit in TeV based on the event loss fraction. Parameters ---------- loss_fraction : float Fraction of events to be lost. Returns ------- astropy.units.Quantity Lower energy limit. """ energy_min = ( self._compute_limits( self.histograms.get("energy"), self.energy_bins, loss_fraction, limit_type="lower" ) * u.TeV ) return self._is_close( energy_min, self.file_info["energy_min"].to("TeV") if "energy_min" in self.file_info else None, "Lower energy limit is equal to the minimum energy of", )
def _is_close(self, value, reference, warning_text): """Check if the value is close to the reference value and log a warning if so.""" if reference is not None and np.isclose(value.value, reference.value, rtol=1.0e-2): self._logger.warning(f"{warning_text} {value}.") return value @property def core_distance_bins(self): """Return bins for the core distance histogram.""" return np.linspace( self.file_info.get("core_scatter_min", 0.0 * u.m).to("m").value, self.file_info.get("core_scatter_max", 1.0e5 * u.m).to("m").value, 100, )
[docs] def compute_upper_radius_limit(self, loss_fraction): """ Compute the upper radial distance based on the event loss fraction. Parameters ---------- loss_fraction : float Fraction of events to be lost. Returns ------- astropy.units.Quantity Upper radial distance in m. """ radius_limit = ( self._compute_limits( self.histograms.get("core_distance"), self.core_distance_bins, loss_fraction, limit_type="upper", ) * u.m ) return self._is_close( radius_limit, self.file_info["core_scatter_max"].to("m") if "core_scatter_max" in self.file_info else None, "Upper radius limit is equal to the maximum core scatter distance of", )
@property def view_cone_bins(self): """Return bins for the viewcone histogram.""" return np.linspace( self.file_info.get("viewcone_min", 0.0 * u.deg).to("deg").value, self.file_info.get("viewcone_max", 20.0 * u.deg).to("deg").value, 100, )
[docs] def compute_viewcone(self, loss_fraction): """ Compute the viewcone based on the event loss fraction. The shower IDs of triggered events are used to create a mask for the azimuth and altitude of the triggered events. A mapping is created between the triggered events and the simulated events using the shower IDs. Parameters ---------- loss_fraction : float Fraction of events to be lost. Returns ------- astropy.units.Quantity Viewcone radius in degrees. """ viewcone_limit = ( self._compute_limits( self.histograms.get("angular_distance"), self.view_cone_bins, loss_fraction, limit_type="upper", ) * u.deg ) return self._is_close( viewcone_limit, self.file_info["viewcone_max"].to("deg") if "viewcone_max" in self.file_info else None, "Upper viewcone limit is equal to the maximum viewcone distance of", )
[docs] def plot_data(self, output_path=None, rebin_factor=2): """ Histogram plotting. Parameters ---------- output_path: Path or str, optional Directory to save plots. If None, plots will be displayed. rebin_factor: int, optional Factor by which to reduce the number of bins in 2D histograms for rebinned plots. Default is 2 (merge every 2 bins). Set to 0 or 1 to disable rebinning. """ # Plot label constants core_distance_label = "Core Distance [m]" energy_label = "Energy [TeV]" pointing_direction_label = "Distance to pointing direction [deg]" cumulative_prefix = "Cumulative " event_count_label = "Event Count" core_x_label = "Core X [m]" core_y_label = "Core Y [m]" # Plot parameter constants hist_1d_params = {"color": "tab:green", "edgecolor": "tab:green", "lw": 1} hist_1d_cumulative_params = {"color": "tab:blue", "edgecolor": "tab:blue", "lw": 1} hist_2d_params = {"norm": "log", "cmap": "viridis", "show_contour": False} hist_2d_equal_params = { "norm": "log", "cmap": "viridis", "aspect": "equal", "show_contour": False, } hist_2d_normalized_params = {"norm": "linear", "cmap": "viridis", "show_contour": True} self._logger.info(f"Plotting histograms written to {output_path}") angular_dist_vs_energy = self.histograms.get("angular_distance_vs_energy") normalized_cumulative_angular_vs_energy = self._calculate_cumulative_histogram( angular_dist_vs_energy, axis=0, normalize=True ) core_vs_energy = self.histograms.get("core_vs_energy") normalized_cumulative_core_vs_energy = self._calculate_cumulative_histogram( core_vs_energy, axis=0, normalize=True ) energy_hist = self.histograms.get("energy") cumulative_energy = self._calculate_cumulative_histogram(energy_hist, reverse=True) core_distance_hist = self.histograms.get("core_distance") cumulative_core_distance = self._calculate_cumulative_histogram(core_distance_hist) angular_distance_hist = self.histograms.get("angular_distance") cumulative_angular_distance = self._calculate_cumulative_histogram(angular_distance_hist) plots = { "core_vs_energy": { "data": self.histograms.get("core_vs_energy"), "bins": [ self.histograms.get("core_vs_energy_bin_x_edges"), self.histograms.get("core_vs_energy_bin_y_edges"), ], "plot_type": "histogram2d", "plot_params": hist_2d_params, "labels": { "x": core_distance_label, "y": energy_label, "title": "Triggered events: core distance vs energy", }, "lines": { "x": self.limits["upper_radius_limit"].value, "y": self.limits["lower_energy_limit"].value, }, "scales": {"y": "log"}, "colorbar_label": event_count_label, "filename": "core_vs_energy_distribution", }, "energy_distribution": { "data": self.histograms.get("energy"), "bins": self.histograms.get("energy_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_params, "labels": { "x": energy_label, "y": event_count_label, "title": "Triggered events: energy distribution", }, "scales": {"x": "log", "y": "log"}, "lines": {"x": self.limits["lower_energy_limit"].value}, "filename": "energy_distribution", }, "energy_distribution_cumulative": { "data": cumulative_energy, "bins": self.histograms.get("energy_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_cumulative_params, "labels": { "x": energy_label, "y": cumulative_prefix + event_count_label, "title": "Triggered events: cumulative energy distribution", }, "scales": {"x": "log", "y": "log"}, "lines": {"x": self.limits["lower_energy_limit"].value}, "filename": "energy_distribution_cumulative", }, "core_distance": { "data": self.histograms.get("core_distance"), "bins": self.histograms.get("core_distance_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_params, "labels": { "x": core_distance_label, "y": event_count_label, "title": "Triggered events: core distance distribution", }, "lines": {"x": self.limits["upper_radius_limit"].value}, "filename": "core_distance_distribution", }, "core_distance_cumulative": { "data": cumulative_core_distance, "bins": self.histograms.get("core_distance_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_cumulative_params, "labels": { "x": core_distance_label, "y": cumulative_prefix + event_count_label, "title": "Triggered events: cumulative core distance distribution", }, "lines": {"x": self.limits["upper_radius_limit"].value}, "filename": "core_distance_cumulative_distribution", }, "core_xy": { "data": self.histograms.get("shower_cores"), "bins": [ self.histograms.get("shower_cores_bin_x_edges"), self.histograms.get("shower_cores_bin_y_edges"), ], "plot_type": "histogram2d", "plot_params": hist_2d_equal_params, "labels": { "x": core_x_label, "y": core_y_label, "title": "Triggered events: core x vs core y", }, "colorbar_label": event_count_label, "lines": { "r": self.limits["upper_radius_limit"].value, }, "filename": "core_xy_distribution", }, "angular_distance": { "data": self.histograms.get("angular_distance"), "bins": self.histograms.get("angular_distance_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_params, "labels": { "x": pointing_direction_label, "y": event_count_label, "title": "Triggered events: angular distance distribution", }, "lines": {"x": self.limits["viewcone_radius"].value}, "filename": "angular_distance_distribution", }, "angular_distance_cumulative": { "data": cumulative_angular_distance, "bins": self.histograms.get("angular_distance_bin_edges"), "plot_type": "histogram", "plot_params": hist_1d_cumulative_params, "labels": { "x": pointing_direction_label, "y": cumulative_prefix + event_count_label, "title": "Triggered events: cumulative angular distance distribution", }, "lines": {"x": self.limits["viewcone_radius"].value}, "filename": "angular_distance_cumulative_distribution", }, "angular_distance_vs_energy": { "data": self.histograms.get("angular_distance_vs_energy"), "bins": [ self.histograms.get("angular_distance_vs_energy_bin_x_edges"), self.histograms.get("angular_distance_vs_energy_bin_y_edges"), ], "plot_type": "histogram2d", "plot_params": hist_2d_params, "labels": { "x": pointing_direction_label, "y": energy_label, "title": "Triggered events: angular distance distance vs energy", }, "lines": { "x": self.limits["viewcone_radius"].value, "y": self.limits["lower_energy_limit"].value, }, "scales": {"y": "log"}, "colorbar_label": event_count_label, "filename": "angular_distance_vs_energy_distribution", }, "angular_distance_vs_energy_cumulative": { "data": normalized_cumulative_angular_vs_energy, "bins": [ self.histograms.get("angular_distance_vs_energy_bin_x_edges"), self.histograms.get("angular_distance_vs_energy_bin_y_edges"), ], "plot_type": "histogram2d", "plot_params": hist_2d_normalized_params, # Includes contour line at value=1 "labels": { "x": pointing_direction_label, "y": energy_label, "title": "Triggered events: fraction of events by angular distance vs energy", }, "lines": { "x": self.limits["viewcone_radius"].value, "y": self.limits["lower_energy_limit"].value, }, "scales": {"y": "log"}, "colorbar_label": "Fraction of events", "filename": "angular_distance_vs_energy_cumulative_distribution", }, "core_vs_energy_cumulative": { "data": normalized_cumulative_core_vs_energy, "bins": [ self.histograms.get("core_vs_energy_bin_x_edges"), self.histograms.get("core_vs_energy_bin_y_edges"), ], "plot_type": "histogram2d", "plot_params": hist_2d_normalized_params, "labels": { "x": core_distance_label, "y": energy_label, "title": "Triggered events: fraction of events by core distance vs energy", }, "lines": { "x": self.limits["upper_radius_limit"].value, "y": self.limits["lower_energy_limit"].value, }, "scales": {"y": "log"}, "colorbar_label": "Fraction of events", "filename": "core_vs_energy_cumulative_distribution", }, } for plot_key, plot_args in plots.items(): plot_filename = plot_args.pop("filename") if self.array_name and plot_args.get("labels", {}).get("title"): plot_args["labels"]["title"] += f" ({self.array_name} array)" filename = self._build_plot_filename(plot_filename, self.array_name) output_file = output_path / filename if output_path else None self._create_plot(**plot_args, output_file=output_file) if self._should_create_rebinned_plot(rebin_factor, plot_args, plot_key): self._create_rebinned_plot(plot_args, filename, output_path, rebin_factor)
def _build_plot_filename(self, base_filename, array_name=None): """ Build the full plot filename with appropriate extensions. Parameters ---------- base_filename : str The base filename without extension array_name : str, optional Name of the array to append to filename Returns ------- str Complete filename with extension """ if array_name: return f"{base_filename}_{array_name}.png" return f"{base_filename}.png" def _should_create_rebinned_plot(self, rebin_factor, plot_args, plot_key): """ Check if a rebinned version of the plot should be created. Parameters ---------- rebin_factor : int Factor by which to rebin the energy axis plot_args : dict Plot arguments plot_key : str Key identifying the plot type Returns ------- bool True if a rebinned plot should be created, False otherwise """ return ( rebin_factor > 1 and plot_args["plot_type"] == "histogram2d" and plot_key.endswith("_cumulative") and plot_args.get("plot_params", {}).get("norm") == "linear" ) def _create_rebinned_plot(self, plot_args, filename, output_path, rebin_factor): """ Create a rebinned version of a 2D histogram plot. Parameters ---------- plot_args : dict Plot arguments for the original plot filename : str Filename of the original plot output_path : Path or None Path to save the plot to, or None rebin_factor : int Factor by which to rebin the energy axis """ data = plot_args["data"] bins = plot_args["bins"] rebinned_data, rebinned_x_bins, rebinned_y_bins = self._rebin_2d_histogram( data, bins[0], bins[1], rebin_factor ) rebinned_plot_args = plot_args.copy() rebinned_plot_args["data"] = rebinned_data rebinned_plot_args["bins"] = [rebinned_x_bins, rebinned_y_bins] if rebinned_plot_args.get("labels", {}).get("title"): rebinned_plot_args["labels"]["title"] += f" (Energy rebinned {rebin_factor}x)" rebinned_filename = f"{filename.replace('.png', '')}_rebinned.png" rebinned_output_file = output_path / rebinned_filename if output_path else None self._create_plot(**rebinned_plot_args, output_file=rebinned_output_file) def _create_plot( self, data, bins=None, plot_type="histogram", plot_params=None, labels=None, scales=None, colorbar_label=None, output_file=None, lines=None, ): """ Create and save a plot with the given parameters. For normalized 2D histograms, a contour line is drawn at the value of 1.0 to indicate the boundary where each energy bin reaches complete containment. This can be controlled with the 'show_contour' parameter in plot_params. """ plot_params = plot_params or {} labels = labels or {} scales = scales or {} lines = lines or {} fig, ax = plt.subplots(figsize=(8, 6)) if plot_type == "histogram": plt.bar(bins[:-1], data, width=np.diff(bins), **plot_params) elif plot_type == "histogram2d": pcm = self._create_2d_histogram_plot(data, bins, plot_params) plt.colorbar(pcm, label=colorbar_label) if "x" in lines: plt.axvline(lines["x"], color="r", linestyle="--", linewidth=0.5) if "y" in lines: plt.axhline(lines["y"], color="r", linestyle="--", linewidth=0.5) if "r" in lines: circle = plt.Circle( (0, 0), lines["r"], color="r", fill=False, linestyle="--", linewidth=0.5 ) plt.gca().add_artist(circle) ax.set( xlabel=labels.get("x", ""), ylabel=labels.get("y", ""), title=labels.get("title", ""), xscale=scales.get("x", "linear"), yscale=scales.get("y", "linear"), ) if output_file: self._logger.info(f"Saving plot to {output_file}") plt.savefig(output_file, dpi=300, bbox_inches="tight") plt.close() else: plt.tight_layout() plt.show() return fig def _create_2d_histogram_plot(self, data, bins, plot_params): """ Create a 2D histogram plot with the given parameters. Parameters ---------- data : np.ndarray 2D histogram data bins : tuple of np.ndarray Bin edges for x and y axes plot_params : dict Plot parameters including norm, cmap, and show_contour Returns ------- matplotlib.collections.QuadMesh The created pcolormesh object for colorbar attachment """ if plot_params.get("norm") == "linear": pcm = plt.pcolormesh( bins[0], bins[1], data.T, vmin=0, vmax=1, cmap=plot_params.get("cmap", "viridis"), ) # Add contour line at value=1.0 for normalized histograms if plot_params.get("show_contour", True): x_centers = (bins[0][1:] + bins[0][:-1]) / 2 y_centers = (bins[1][1:] + bins[1][:-1]) / 2 x_mesh, y_mesh = np.meshgrid(x_centers, y_centers) plt.contour( x_mesh, y_mesh, data.T, levels=[0.999999], # very close to 1 for floating point precision colors=["tab:red"], linestyles=["--"], linewidths=[0.5], ) else: pcm = plt.pcolormesh( bins[0], bins[1], data.T, norm=LogNorm(vmin=1, vmax=data.max()), cmap="viridis" ) return pcm def _calculate_cumulative_histogram(self, hist, reverse=False, axis=None, normalize=False): """ Calculate cumulative distribution of a histogram. Works with both 1D and 2D histograms. Parameters ---------- hist : np.ndarray Histogram (1D or 2D) reverse : bool, optional If True, sum from high to low values axis : int, optional For 2D histograms, axis along which to compute cumulative sum None means default behavior: for 1D just cumsum, for 2D along rows normalize : bool, optional If True, normalize by the total sum for each slice along the specified axis For 1D histograms, normalizes by the total sum Returns ------- np.ndarray Histogram with cumulative counts, optionally normalized """ if hist is None: return None if hist.ndim == 1: result = self._calculate_cumulative_1d(hist, reverse) if normalize and np.sum(hist) > 0: result = result / np.sum(hist) return result if axis is None: axis = 1 result = self._apply_cumsum_along_axis(hist.copy(), axis, reverse) if normalize: self._normalize_along_axis(result, hist, axis) return result def _normalize_along_axis(self, result, hist, axis): """ Normalize cumulative histogram along the specified axis. Parameters ---------- result : np.ndarray Cumulative histogram to normalize (modified in-place) hist : np.ndarray Original histogram (for calculating totals) axis : int Axis along which normalization should be applied """ normalized = np.zeros_like(result, dtype=float) if axis == 0: for i in range(result.shape[1]): col_total = np.sum(hist[:, i]) if col_total > 0: normalized[:, i] = result[:, i] / col_total else: # axis == 1 for i in range(result.shape[0]): row_total = np.sum(hist[i, :]) if row_total > 0: normalized[i, :] = result[i, :] / row_total np.copyto(result, normalized) def _calculate_cumulative_1d(self, hist, reverse): """Calculate cumulative distribution for 1D histogram.""" if reverse: return np.cumsum(hist[::-1])[::-1] return np.cumsum(hist) def _calculate_cumulative_2d(self, hist, reverse, axis=None): """Calculate cumulative distribution for 2D histogram.""" if axis is None: axis = 1 return self._apply_cumsum_along_axis(hist, axis, reverse) def _apply_cumsum_along_axis(self, hist, axis, reverse): """Apply cumulative sum along the specified axis of a 2D histogram.""" def cumsum_func(arr): return np.cumsum(arr[::-1])[::-1] if reverse else np.cumsum(arr) return np.apply_along_axis(cumsum_func, axis, hist) def _rebin_2d_histogram(self, hist, x_bins, y_bins, rebin_factor=2): """ Rebin a 2D histogram by merging neighboring bins along the energy dimension (y-axis) only. Parameters ---------- hist : np.ndarray Original 2D histogram data x_bins : np.ndarray Original x-axis bin edges (preserved) y_bins : np.ndarray Original y-axis (energy) bin edges rebin_factor : int, optional Factor by which to reduce the number of bins in the energy dimension Default is 2 (merge every 2 bins) Returns ------- tuple (rebinned_hist, x_bins, rebinned_y_bins) """ if rebin_factor <= 1: return hist, x_bins, y_bins x_size = hist.shape[0] new_y_size = hist.shape[1] // rebin_factor new_hist = np.zeros((x_size, new_y_size), dtype=float) for i in range(x_size): for j in range(new_y_size): y_start = j * rebin_factor y_end = (j + 1) * rebin_factor new_hist[i, j] = np.sum(hist[i, y_start:y_end]) new_y_bins = y_bins[::rebin_factor] return new_hist, x_bins, new_y_bins