Source code for production_configuration.derive_production_statistics

"""
Calculate the event production statistics based on metrics.

Module for calculating the production event statistics based on statistical error metrics.
Contains the `ProductionStatisticsDerivator` class, which derives the number of events for
both the entire dataset and specific grid points. Event statistic is calculated using error
metrics and the evaluator's results.
"""

import astropy.units as u
import numpy as np

__all__ = ["ProductionStatisticsDerivator"]


[docs] class ProductionStatisticsDerivator: """ Derives the production statistics based on statistical error metrics. Supports deriving statistics for both the entire dataset and specific grid points like energy values. """ def __init__(self, evaluator, metrics: dict): """ Initialize the ProductionStatisticsDerivator with the evaluator and metrics. Parameters ---------- evaluator : StatisticalErrorEvaluator The evaluator responsible for calculating metrics and handling event data. metrics : dict Dictionary containing metrics, including target error for effective area. """ self.evaluator = evaluator self.metrics = metrics
[docs] def derive_statistics(self, return_sum: bool = True) -> u.Quantity: """ Derive the production statistics based on statistical error metrics. Parameters ---------- return_sum : bool, optional If True, returns the sum of production statistics for the entire set of MC events. If False, returns the production statistics for each grid point along the energy axis. Default is True. Returns ------- u.Quantity If 'return_sum' is True, returns the total derived production statistics as a u.Quantity. If 'return_sum' is False, returns an array of production statistics along the energy axis as a u.Quantity. """ scaling_factor = self._compute_scaling_factor() base_events = self._number_of_simulated_events() if return_sum: return np.sum(base_events * scaling_factor) return base_events * scaling_factor
def _compute_scaling_factor(self) -> float: """ Compute the scaling factor based on the error metrics. Returns ------- float The scaling factor. """ metric_results = self.evaluator.calculate_metrics() uncertainty_effective_area = metric_results.get("uncertainty_effective_area") current_max_error = uncertainty_effective_area.get("max_error") target_max_error = self.metrics.get("uncertainty_effective_area").get("target_error")[ "value" ] return (current_max_error / target_max_error) ** 2 def _number_of_simulated_events(self) -> u.Quantity: """ Fetch the number of simulated events from the evaluator's data. Returns ------- u.Quantity The number of simulated events. """ return self.evaluator.data.get("simulated_event_histogram")
[docs] def calculate_production_statistics_at_grid_point( self, grid_point: tuple, ) -> u.Quantity: """ Derive the production statistics for a specific energy grid point. Parameters ---------- grid_point : tuple The grid point specifying energy, azimuth, zenith, NSB, and offset. Returns ------- float The derived production statistics at the specified grid point (energy). """ energy = grid_point[0] bin_edges = self.evaluator.create_bin_edges() bin_idx = np.digitize(energy, bin_edges) - 1 scaling_factor = self._compute_scaling_factor() simulated_event_histogram = self.evaluator.data.get("simulated_event_histogram", []) if bin_idx < 0 or bin_idx >= len(simulated_event_histogram): raise ValueError(f"Energy {energy} is outside therange of the simulated events data.") base_events = self._number_of_simulated_events() base_event_at_energy = base_events[bin_idx] return base_event_at_energy * scaling_factor