Ray Tracing#
The ray-tracing modules handle ray tracing simulations, incident angle calculations, PSF analysis and I/O.
incident_angles#
Calculate photon incident angles on focal plane and primary/secondary mirrors.
Parses the imaging list (.lis) produced by sim_telarray_debug_trace and uses
Angle of incidence at focal surface, with respect to the optical axis [deg],
Angle of incidence on to primary mirror [deg], and
Angle of incidence on to secondary mirror [deg] (if available).
- class ray_tracing.incident_angles.IncidentAnglesCalculator(simtel_path, db_config, config_data, output_dir, label=None)[source]#
Run a PSF-style sim_telarray job and compute incident angles at mirrors or focal surfaces.
- Parameters:
- simtel_pathstr or pathlib.Path
Path to the sim_telarray installation directory (containing
sim_telarray/bin).- db_configdict
Database configuration passed to
initialize_simulation_models.- config_datadict
Simulation configuration (e.g.
site,telescope,model_version,off_axis_angle,source_distance,number_of_photons).- output_dirstr or pathlib.Path
Output directory where logs, scripts, photons files and results are written.
- labelstr, optional
Label used to name outputs; defaults to
incident_angles_<telescope>when omitted.
Notes
Additional options are read from
config_datawhen present: -perfect_mirror(bool, default False) -calculate_primary_secondary_angles(bool, default True)- run()[source]#
Run sim_telarray, parse the imaging list, and return an angle table.
- Returns:
- astropy.table.QTable
Table containing at least the
angle_incidence_focalcolumn and, when configured, primary/secondary angles and hit geometry.
- run_for_offsets(offsets)[source]#
Run the simulation for multiple off-axis angles.
For each off-axis angle provided, run a full simulation, labeling output files accordingly.
- Parameters:
- offsetsIterable[float]
Off-axis angles in degrees.
- Returns:
- dict[float, astropy.table.QTable]
Mapping from off-axis angle (deg) to the resulting table.
ray_tracing#
Ray tracing simulations and analysis.
- class ray_tracing.ray_tracing.RayTracing(telescope_model, site_model, simtel_path, label=None, zenith_angle=<Quantity 20. deg>, off_axis_angle=<Quantity [0.] deg>, source_distance=<Quantity 10. km>, single_mirror_mode=False, use_random_focal_length=False, random_focal_length_seed=None, mirror_numbers='all')[source]#
Ray tracing simulations and analysis.
- Parameters:
- telescope_model: TelescopeModel
telescope model
- site_model: SiteModel
site model
- simtel_path: str (or Path)
Location of sim_telarray installation.
- label: str
label used for output file naming.
- zenith_angle: astropy.units.Quantity
Zenith angle.
- off_axis_angle: list of astropy.units.Quantity
Off-axis angles.
- source_distance: astropy.units.Quantity
Source distance.
- single_mirror_mode: bool
Single mirror mode flag.
- use_random_focal_length: bool
Use random focal length flag.
- random_focal_length_seed: int
Seed for the random number generator used for focal length variation.
- mirror_numbers: list, str
List of mirror numbers (or ‘all’).
- analyze(export=True, force=False, use_rx=False, no_tel_transmission=False, containment_fraction=0.8)[source]#
Ray tracing analysis.
Involves the following: read simtel files, compute PSFs and eff areas, store the results in _results.
- Parameters:
- export: bool
If True, results will be exported to a file automatically. Alternatively, export_results function can be used.
- force: bool
If True, existing results files will be removed and analysis will be done again.
- use_rx: bool
If True, calculations are done using the rx binary provided by sim_telarray. If False, calculations are done internally, by the module psf_analysis.
- no_tel_transmission: bool
If True, the telescope transmission is not applied.
- containment_fraction: float
Containment fraction for PSF containment calculation. Allowed values are in the interval [0,1]
- get_mean(key)[source]#
Get mean value of key.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- Returns:
- float
Mean value of key.
- Raises:
- KeyError
If key is not among the valid options.
- get_std_dev(key)[source]#
Get std dev of key.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- Returns:
- float
Std deviation of key.
- Raises:
- KeyError
If key is not among the valid options.
- plot(key, save=False, d80=None, **kwargs)[source]#
Plot key vs off-axis angle and save the figure in pdf.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- save: bool
If True, figure will be saved.
- d80: float
d80 for cumulative PSF plot.
- **kwargs:
kwargs for plt.plot
- Raises:
- KeyError
If key is not among the valid options.
psf_analysis#
Module to analyse psf images (e.g. results from ray tracing simulations).
Main functionalities are: computing centroids, psf containers etc.
- class ray_tracing.psf_analysis.PSFImage(focal_length=None, total_scattered_area=None, containment_fraction=None, simtel_path=None)[source]#
Image composed of list of photon positions (2D).
Load photon list from sim_telarray file and compute centroids, psf containers, effective area, as well as plot the image as a 2D histogram. Internal units: photon positions in cm internally.
- Parameters:
- focal_length: float
Focal length of the system in cm. If not given, PSF can only be computed in cm.
- total_scattered_area: float
Scatter area of all photons in cm^2. If not given, effective area cannot be computed.
- containment_fraction: float
Containment fraction for PSF calculation.
- simtel_path: str
Path to sim_telarray installation.
- get_cumulative_data(radius=None)[source]#
Provide cumulative data (intensity vs radius).
- Parameters:
- radius: array
Array with radius calculate the cumulative PSF in distance units.
- Returns:
- (radius, intensity)
- get_effective_area(tel_transmission=1.0)[source]#
Return effective area pre calculated.
- Parameters:
- telescope_transmissionfloat
Telescope transmission parameter.
- Returns:
- float
Pre-calculated effective area. None if it could not be calculated (e.g because the total scattering area was not set).
- get_image_data(centralized=True)[source]#
Provide image data (2D photon positions in cm) as lists.
- Parameters:
- centralized: bool
Centroid of the image is set to (0, 0) if True.
- Returns:
- (x, y), the photons positions in cm.
- get_psf(fraction=0.8, unit='cm')[source]#
Return PSF.
- Parameters:
- fraction: float
Fraction of photons within the containing radius.
- unit: str
‘cm’ or ‘deg’. ‘deg’ will not work if focal length was not set.
- Returns:
- float:
Containing diameter for a certain intensity fraction (PSF).
- plot_cumulative(file_name=None, d80=None, **kwargs)[source]#
Plot cumulative data (intensity vs radius).
- Parameters:
- **kwargs:
image_* for the histogram plot and psf_* for the psf circle.
- plot_image(centralized=True, file_name=None, **kwargs)[source]#
Plot 2D image as histogram (in cm).
- Parameters:
- centralized: bool
Centroid of the image is set to (0, 0) if True.
- **kwargs:
image_* for the histogram plot and psf_* for the psf circle.
- process_photon_list(photon_file, use_rx)[source]#
Read and process a photon list file generated by sim_telarray.
- Parameters:
- photons_file: str
Name of sim_telarray file with photon list.
- use_rx: bool
Use the RX method for analysis.
psf_parameter_optimisation#
PSF parameter optimisation and fitting routines for mirror alignment and reflection parameters.
This module provides functions for loading PSF data, generating random parameter sets, running PSF simulations, calculating RMSD, and finding the best-fit parameters for a given telescope model. PSF (Point Spread Function) describes how a point source of light is spread out by the optical system, and RMSD (Root Mean Squared Deviation) is used as the optimization metric to quantify the difference between measured and simulated PSF curves.
- ray_tracing.psf_parameter_optimisation.analyze_monte_carlo_error(tel_model, site_model, args_dict, data_to_plot, radius, n_simulations=500)[source]#
Analyze Monte Carlo uncertainty in PSF optimization metrics.
Runs multiple simulations with the same parameters to quantify the statistical uncertainty in the optimization metric due to Monte Carlo noise in the ray tracing simulations. Returns None values if no measurement data is provided or all simulations fail.
- Parameters:
- tel_modelTelescopeModel
Telescope model object with current parameter configuration.
- site_modelSiteModel
Site model object with environmental conditions.
- args_dictdict
Dictionary containing simulation configuration arguments.
- data_to_plotdict
Dictionary containing measured PSF data under “measured” key.
- radiusarray-like
Radius values in cm for PSF evaluation.
- n_simulationsint, optional
Number of Monte Carlo simulations to run (default: 500).
- Returns:
- tuple of (float, float, list, float, float, list, float, float, list)
mean_metric: Mean RMSD or KS statistic value
std_metric: Standard deviation of metric values
metric_values: List of all metric values from simulations
mean_p_value: Mean p-value (None if using RMSD)
std_p_value: Standard deviation of p-values (None if using RMSD)
p_values: List of all p-values from simulations
mean_psf_diameter: Mean PSF containment diameter in cm
std_psf_diameter: Standard deviation of PSF diameter values
psf_diameter_values: List of all PSF diameter values from simulations
- ray_tracing.psf_parameter_optimisation.apply_gradient_step(current_params, gradients, learning_rate)[source]#
Apply gradient descent step to update parameters.
- Parameters:
- current_paramsdict
Dictionary of current parameter values.
- gradientsdict
Dictionary of gradient values for each parameter.
- learning_ratefloat
Step size for the gradient descent update.
- Returns:
- dict
Dictionary of updated parameter values after applying the gradient step.
- ray_tracing.psf_parameter_optimisation.calculate_gradient(tel_model, site_model, args_dict, current_params, data_to_plot, radius, current_rmsd, epsilon=0.0005, use_ks_statistic=False)[source]#
Calculate numerical gradients for all optimization parameters.
- Parameters:
- tel_modelTelescopeModel
Telescope model object for simulations.
- site_modelSiteModel
Site model object with environmental conditions.
- args_dictdict
Dictionary containing simulation configuration arguments.
- current_paramsdict
Dictionary of current parameter values for all optimization parameters.
- data_to_plotdict
Dictionary containing measured PSF data.
- radiusarray-like
Radius values in cm for PSF evaluation.
- current_rmsdfloat
Current RMSD or KS statistic value.
- epsilonfloat, optional
Perturbation value for finite difference calculation (default: 0.0005).
- use_ks_statisticbool, optional
If True, calculate gradients for KS statistic; if False, use RMSD (default: False).
- Returns:
- dict
Dictionary mapping parameter names to their gradient values. For parameters with multiple components, gradients are returned as lists.
- ray_tracing.psf_parameter_optimisation.calculate_ks_statistic(data, sim)[source]#
Calculate the KS statistic between measured and simulated cumulative PSF curves.
- ray_tracing.psf_parameter_optimisation.calculate_rmsd(data, sim)[source]#
Calculate RMSD between measured and simulated cumulative PSF curves.
- ray_tracing.psf_parameter_optimisation.export_psf_parameters(best_pars, telescope, parameter_version, output_dir)[source]#
Export optimized PSF parameters as simulation model parameter files.
- Parameters:
- best_parsdict
Dictionary containing the optimized parameter values.
- telescopestr
Telescope name for the parameter files.
- parameter_versionstr
Version string for the parameter files.
- output_dirPath
Base directory for parameter file output.
- Raises:
- ValueError, KeyError, OSError
If parameter export fails due to invalid values, missing keys, or file I/O errors.
Notes
Creates individual JSON files for each optimized parameter with units. Files are saved in the format: {output_dir}/{telescope}/{parameter_name}-{parameter_version}.json
- ray_tracing.psf_parameter_optimisation.get_previous_values(tel_model)[source]#
Retrieve current PSF parameter values from the telescope model.
- Parameters:
- tel_modelTelescopeModel
Telescope model object containing parameter configurations.
- Returns:
- dict
Dictionary containing current values of PSF optimization parameters: - ‘mirror_reflection_random_angle’: Random reflection angle parameters - ‘mirror_align_random_horizontal’: Horizontal alignment parameters - ‘mirror_align_random_vertical’: Vertical alignment parameters
- ray_tracing.psf_parameter_optimisation.load_and_process_data(args_dict)[source]#
Load and process PSF measurement data from ECSV file.
- Parameters:
- args_dictdict
Dictionary containing command-line arguments with ‘data’ and ‘model_path’ keys.
- Returns:
- tuple of (OrderedDict, array)
data_dict: OrderedDict with “measured” key containing structured array of radius and cumulative PSF data
radius: Array of radius values in cm
- Raises:
- FileNotFoundError
If no data file is specified in args_dict.
- ray_tracing.psf_parameter_optimisation.run_gradient_descent_optimization(tel_model, site_model, args_dict, data_to_plot, radius, rmsd_threshold, learning_rate, output_dir)[source]#
Run gradient descent optimization to minimize PSF fitting metric.
- Parameters:
- tel_modelTelescopeModel
Telescope model object to be optimized.
- site_modelSiteModel
Site model object with environmental conditions.
- args_dictdict
Dictionary containing simulation configuration arguments.
- data_to_plotdict
Dictionary containing measured PSF data under “measured” key.
- radiusarray-like
Radius values in cm for PSF evaluation.
- rmsd_thresholdfloat
Convergence threshold for RMSD improvement.
- learning_ratefloat
Initial learning rate for gradient descent steps.
- output_dirPath
Directory for saving optimization plots and results.
- Returns:
- tuple of (dict, float, list)
best_params: Dictionary of optimized parameter values
best_psf_diameter: PSF containment diameter in cm for the best parameters
results: List of (params, metric, p_value, psf_diameter, simulated_data) for each iteration
- Returns None values if optimization fails or no measurement data is provided.
- ray_tracing.psf_parameter_optimisation.run_psf_optimization_workflow(tel_model, site_model, args_dict, output_dir)[source]#
Run the complete PSF parameter optimization workflow using gradient descent.
- ray_tracing.psf_parameter_optimisation.run_psf_simulation(tel_model, site, args_dict, pars, data_to_plot, radius, pdf_pages=None, is_best=False, use_ks_statistic=False)[source]#
Run PSF simulation for given parameters and calculate optimization metric.
- Parameters:
- tel_modelTelescopeModel
Telescope model object to be configured with the test parameters.
- siteSite
Site model object with environmental conditions.
- args_dictdict
Dictionary containing simulation configuration arguments.
- parsdict
Dictionary of parameter values to test in the simulation.
- data_to_plotdict
Dictionary containing measured PSF data under “measured” key.
- radiusarray-like
Radius values in cm for PSF evaluation.
- pdf_pagesPdfPages, optional
PDF pages object for saving plots (default: None).
- is_bestbool, optional
Flag indicating if this is the best parameter set (default: False).
- use_ks_statisticbool, optional
If True, use KS statistic as metric; if False, use RMSD (default: False).
- Returns:
- tuple of (float, float, float or None, array)
psf_diameter: PSF containment diameter of the simulated PSF in cm
metric: RMSD or KS statistic value
p_value: p-value from KS test (None if using RMSD)
simulated_data: Structured array with simulated cumulative PSF data
- ray_tracing.psf_parameter_optimisation.write_gradient_descent_log(gd_results, best_pars, best_psf_diameter, output_dir, tel_model, use_ks_statistic=False, fraction=0.8)[source]#
Write gradient descent optimization progression to a log file.
- Parameters:
- gd_resultslist
List of tuples containing (params, metric, p_value, psf_diameter, simulated_data) for each optimization iteration.
- best_parsdict
Dictionary containing the best parameter values found.
- best_psf_diameterfloat
PSF containment diameter in cm for the best parameter set.
- output_dirPath
Directory where the log file will be written.
- tel_modelTelescopeModel
Telescope model object for naming the output file.
- use_ks_statisticbool, optional
If True, log KS statistic values; if False, log RMSD values (default: False).
- fractionfloat, optional
PSF containment fraction for labeling (default: 0.8).
- Returns:
- Path
Path to the created log file.
- ray_tracing.psf_parameter_optimisation.write_monte_carlo_analysis(mc_results, output_dir, tel_model, use_ks_statistic=False, fraction=0.8)[source]#
Write Monte Carlo uncertainty analysis results to a log file.
- Parameters:
- mc_resultstuple
Tuple of Monte Carlo analysis results from analyze_monte_carlo_error().
- output_dirPath
Directory where the log file will be written.
- tel_modelTelescopeModel
Telescope model object for naming the output file.
- use_ks_statisticbool, optional
If True, analyze KS statistic results; if False, analyze RMSD results (default: False).
- fractionfloat, optional
PSF containment fraction for labeling (default: 0.8).
- Returns:
- Path
Path to the created log file.
- ray_tracing.psf_parameter_optimisation.write_tested_parameters_to_file(results, best_pars, best_psf_diameter, output_dir, tel_model, fraction=0.8)[source]#
Write optimization results and tested parameters to a log file.
- Parameters:
- resultslist
List of tuples containing (parameters, ks_statistic, p_value, psf_diameter, simulated_data) for each tested parameter set.
- best_parsdict
Dictionary containing the best parameter values found.
- best_psf_diameterfloat
PSF containment diameter in cm for the best parameter set.
- output_dirPath
Directory where the log file will be written.
- tel_modelTelescopeModel
Telescope model object for naming the output file.
- fractionfloat, optional
PSF containment fraction for labeling (default: 0.8).
- Returns:
- Path
Path to the created log file.
mirror_panel_psf#
Mirror panel PSF calculation.
- class ray_tracing.mirror_panel_psf.MirrorPanelPSF(label, args_dict, db_config)[source]#
Mirror panel PSF and random reflection angle calculation.
This class is used to derive the random reflection angle for the mirror panels in the telescope.
Known limitations: single Gaussian PSF model, no support for multiple PSF components (as allowed in the model parameters).
- Parameters:
- label: str
Application label.
- args_dict: dict
Dictionary with input arguments.
- db_config:
Dictionary with database configuration.
- derive_random_reflection_angle(save_figures=False)[source]#
Minimize the difference between measured and simulated PSF for reflection angle.
Main loop of the optimization process. The method iterates over different values of the random reflection angle until the difference in the mean value of the D80 containment is minimal.
- run_simulations_and_analysis(rnda, save_figures=False)[source]#
Run ray tracing simulations and analysis for one given value of rnda.
- Parameters:
- rnda: float
Random reflection angle in degrees.
- save_figures: bool
Save figures.
- Returns:
- mean_d80: float
Mean value of D80 in cm.
- sig_d80: float
Standard deviation of D80 in cm.