Ray Tracing#
The ray-tracing modules handle ray tracing simulations, PSF analysis and I/O.
ray_tracing#
Ray tracing simulations and analysis.
- class ray_tracing.ray_tracing.RayTracing(telescope_model, site_model, simtel_path, label=None, zenith_angle=<Quantity 20. deg>, off_axis_angle=<Quantity [0.] deg>, source_distance=<Quantity 10. km>, single_mirror_mode=False, use_random_focal_length=False, random_focal_length_seed=None, mirror_numbers='all')[source]#
Ray tracing simulations and analysis.
- Parameters:
- telescope_model: TelescopeModel
telescope model
- site_model: SiteModel
site model
- simtel_path: str (or Path)
Location of sim_telarray installation.
- label: str
label used for output file naming.
- zenith_angle: astropy.units.Quantity
Zenith angle.
- off_axis_angle: list of astropy.units.Quantity
Off-axis angles.
- source_distance: astropy.units.Quantity
Source distance.
- single_mirror_mode: bool
Single mirror mode flag.
- use_random_focal_length: bool
Use random focal length flag.
- random_focal_length_seed: int
Seed for the random number generator used for focal length variation.
- mirror_numbers: list, str
List of mirror numbers (or ‘all’).
- analyze(export=True, force=False, use_rx=False, no_tel_transmission=False, containment_fraction=0.8)[source]#
Ray tracing analysis.
Involves the following: read simtel files, compute PSFs and eff areas, store the results in _results.
- Parameters:
- export: bool
If True, results will be exported to a file automatically. Alternatively, export_results function can be used.
- force: bool
If True, existing results files will be removed and analysis will be done again.
- use_rx: bool
If True, calculations are done using the rx binary provided by sim_telarray. If False, calculations are done internally, by the module psf_analysis.
- no_tel_transmission: bool
If True, the telescope transmission is not applied.
- containment_fraction: float
Containment fraction for PSF containment calculation. Allowed values are in the interval [0,1]
- get_mean(key)[source]#
Get mean value of key.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- Returns:
- float
Mean value of key.
- Raises:
- KeyError
If key is not among the valid options.
- get_std_dev(key)[source]#
Get std dev of key.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- Returns:
- float
Std deviation of key.
- Raises:
- KeyError
If key is not among the valid options.
- plot(key, save=False, d80=None, **kwargs)[source]#
Plot key vs off-axis angle and save the figure in pdf.
- Parameters:
- key: str
d80_cm, d80_deg, eff_area or eff_flen
- save: bool
If True, figure will be saved.
- d80: float
d80 for cumulative PSF plot.
- **kwargs:
kwargs for plt.plot
- Raises:
- KeyError
If key is not among the valid options.
psf_analysis#
Module to analyse psf images (e.g. results from ray tracing simulations).
Main functionalities are: computing centroids, psf containers etc.
- class ray_tracing.psf_analysis.PSFImage(focal_length=None, total_scattered_area=None, containment_fraction=None, simtel_path=None)[source]#
Image composed of list of photon positions (2D).
Load photon list from sim_telarray file and compute centroids, psf containers, effective area, as well as plot the image as a 2D histogram. Internal units: photon positions in cm internally.
- Parameters:
- focal_length: float
Focal length of the system in cm. If not given, PSF can only be computed in cm.
- total_scattered_area: float
Scatter area of all photons in cm^2. If not given, effective area cannot be computed.
- containment_fraction: float
Containment fraction for PSF calculation.
- simtel_path: str
Path to sim_telarray installation.
- get_cumulative_data(radius=None)[source]#
Provide cumulative data (intensity vs radius).
- Parameters:
- radius: array
Array with radius calculate the cumulative PSF in distance units.
- Returns:
- (radius, intensity)
- get_effective_area(tel_transmission=1.0)[source]#
Return effective area pre calculated.
- Parameters:
- telescope_transmissionfloat
Telescope transmission parameter.
- Returns:
- float
Pre-calculated effective area. None if it could not be calculated (e.g because the total scattering area was not set).
- get_image_data(centralized=True)[source]#
Provide image data (2D photon positions in cm) as lists.
- Parameters:
- centralized: bool
Centroid of the image is set to (0, 0) if True.
- Returns:
- (x, y), the photons positions in cm.
- get_psf(fraction=0.8, unit='cm')[source]#
Return PSF.
- Parameters:
- fraction: float
Fraction of photons within the containing radius.
- unit: str
‘cm’ or ‘deg’. ‘deg’ will not work if focal length was not set.
- Returns:
- float:
Containing diameter for a certain intensity fraction (PSF).
- plot_cumulative(file_name=None, d80=None, **kwargs)[source]#
Plot cumulative data (intensity vs radius).
- Parameters:
- **kwargs:
image_* for the histogram plot and psf_* for the psf circle.
- plot_image(centralized=True, file_name=None, **kwargs)[source]#
Plot 2D image as histogram (in cm).
- Parameters:
- centralized: bool
Centroid of the image is set to (0, 0) if True.
- **kwargs:
image_* for the histogram plot and psf_* for the psf circle.
- process_photon_list(photon_file, use_rx)[source]#
Read and process a photon list file generated by sim_telarray.
- Parameters:
- photons_file: str
Name of sim_telarray file with photon list.
- use_rx: bool
Use the RX method for analysis.
psf_parameter_optimisation#
PSF parameter optimisation and fitting routines for mirror alignment and reflection parameters.
This module provides functions for loading PSF data, generating random parameter sets, running PSF simulations, calculating RMSD, and finding the best-fit parameters for a given telescope model.
PSF (Point Spread Function) describes how a point source of light is spread out by the optical system, and RMSD (Root Mean Squared Deviation) is used as the optimization metric to quantify the difference between measured and simulated PSF curves.
- ray_tracing.psf_parameter_optimisation.add_parameters(all_parameters, mirror_reflection, mirror_align, mirror_reflection_fraction=0.15, mirror_reflection_2=0.035)[source]#
Transform and add parameters to the all_parameters list.
- Parameters:
- mirror_reflectionfloat
The random angle of mirror reflection.
- mirror_alignfloat
The random angle for mirror alignment (both horizontal and vertical).
- mirror_reflection_fractionfloat, optional
The fraction of the mirror reflection. Default is 0.15.
- mirror_reflection_2float, optional
A secondary random angle for mirror reflection. Default is 0.035.
- Returns:
- None
Updates the all_parameters list in place.
- ray_tracing.psf_parameter_optimisation.calculate_rmsd(data, sim)[source]#
Calculate Root Mean Squared Deviation to be used as metric to find the best parameters.
- ray_tracing.psf_parameter_optimisation.create_d80_vs_offaxis_plot(tel_model, site_model, args_dict, best_pars, output_dir)[source]#
Create D80 vs off-axis angle plot using the best parameters.
- Parameters:
- tel_modelTelescopeModel
Telescope model object.
- site_modelSiteModel
Site model object.
- args_dictdict
Dictionary containing parsed command-line arguments.
- best_parsdict
Best parameter set.
- output_dirPath
Output directory for saving plots.
- ray_tracing.psf_parameter_optimisation.export_psf_parameters(best_pars, tel_model, parameter_version, output_dir)[source]#
Export PSF parameters as simulation model parameter files.
- Parameters:
- best_parsdict
Best parameter set
- tel_modelTelescopeModel
Telescope model object
- parameter_versionstr
Parameter version string
- output_dirPath
Output directory path
- ray_tracing.psf_parameter_optimisation.find_best_parameters(all_parameters, tel_model, site_model, args_dict, data_to_plot, radius, pdf_pages=None)[source]#
Find the best parameters by running simulations for all parameter sets.
Loop over all parameter sets, run the simulation, compute RMSD, and return the best parameters and their RMSD.
- ray_tracing.psf_parameter_optimisation.generate_random_parameters(all_parameters, n_runs, args_dict, mrra_0, mfr_0, mrra2_0, mar_0, tel_model)[source]#
Generate random parameters for tuning.
The parameter ranges around the previous values are configurable via module constants.
- Parameters:
- all_parameterslist
List to store all parameter sets.
- n_runsint
Number of random parameter combinations to test.
- args_dictdict
Dictionary containing parsed command-line arguments.
- mrra_0float
Initial value of mirror_reflection_random_angle.
- mfr_0float
Initial value of mirror_reflection_fraction.
- mrra2_0float
Initial value of the second mirror_reflection_random_angle.
- mar_0float
Initial value of mirror_align_random_horizontal/vertical.
- tel_modelTelescopeModel
Telescope model object to check if it’s a dual mirror telescope.
- ray_tracing.psf_parameter_optimisation.get_previous_values(tel_model)[source]#
Retrieve previous parameter values from the telescope model.
- Parameters:
- tel_modelTelescopeModel
Telescope model object.
- Returns:
- tuple
Tuple containing the previous values of mirror_reflection_random_angle (first entry), mirror_reflection_fraction, second entry), mirror_reflection_random_angle (third entry), and mirror_align_random_horizontal/vertical.
- ray_tracing.psf_parameter_optimisation.load_and_process_data(args_dict)[source]#
Load and process data if specified in the command-line arguments.
- Returns:
- data_to_plot: OrderedDict containing loaded and processed data.
- radius: Radius data from loaded data (if available).
- ray_tracing.psf_parameter_optimisation.load_psf_data(data_file)[source]#
Load data from a text file containing cumulative PSF measurements.
- Parameters:
- data_filestr
Name of the data file with the measured cumulative PSF. Expected format: Column 0: radial distance in mm Column 2: cumulative PSF values
- Returns:
- numpy.ndarray
Loaded and processed data with radius in cm and normalized cumulative PSF.
- ray_tracing.psf_parameter_optimisation.run_psf_optimization_workflow(tel_model, site_model, args_dict, output_dir)[source]#
Run the complete PSF parameter optimization workflow.
This function consolidates the main optimization logic to make the application lighter.
- Parameters:
- tel_modelTelescopeModel
Telescope model object
- site_modelSiteModel
Site model object
- args_dictdict
Dictionary containing parsed command-line arguments
- output_dirPath
Output directory path
- Returns:
- None
All results are saved to files and printed to console
- ray_tracing.psf_parameter_optimisation.run_psf_simulation(tel_model, site_model, args_dict, pars, data_to_plot, radius, pdf_pages=None, is_best=False, return_simulated_data=False)[source]#
Run the simulation for one set of parameters and return D80, RMSD.
- Parameters:
- tel_modelTelescopeModel
Telescope model object.
- site_modelSiteModel
Site model object.
- args_dictdict
Dictionary containing parsed command-line arguments.
- parsdict
Parameter set dictionary.
- data_to_plotdict
Data dictionary for plotting.
- radiusarray-like
Radius data.
- pdf_pagesPdfPages, optional
PDF pages object for plotting. If None, no plotting is done.
- is_bestbool, optional
Whether this is the best parameter set for highlighting in plots.
- return_simulated_databool, optional
If True, returns simulated data as third element in return tuple.
- Returns:
- tuple
(d80, rmsd) if return_simulated_data=False (d80, rmsd, simulated_data) if return_simulated_data=True
- ray_tracing.psf_parameter_optimisation.write_tested_parameters_to_file(results, best_pars, best_d80, output_dir, tel_model)[source]#
Write all tested parameters and their metrics to a text file.
- Parameters:
- resultslist
List of (pars, rmsd, d80, simulated_data) tuples
- best_parsdict
Best parameter set
- best_d80float
Best D80 value
- output_dirPath
Output directory path
- tel_modelTelescopeModel
Telescope model object for filename generation
mirror_panel_psf#
Mirror panel PSF calculation.
- class ray_tracing.mirror_panel_psf.MirrorPanelPSF(label, args_dict, db_config)[source]#
Mirror panel PSF and random reflection angle calculation.
This class is used to derive the random reflection angle for the mirror panels in the telescope.
Known limitations: single Gaussian PSF model, no support for multiple PSF components (as allowed in the model parameters).
- Parameters:
- label: str
Application label.
- args_dict: dict
Dictionary with input arguments.
- db_config:
Dictionary with database configuration.
- derive_random_reflection_angle(save_figures=False)[source]#
Minimize the difference between measured and simulated PSF for reflection angle.
Main loop of the optimization process. The method iterates over different values of the random reflection angle until the difference in the mean value of the D80 containment is minimal.
- run_simulations_and_analysis(rnda, save_figures=False)[source]#
Run ray tracing simulations and analysis for one given value of rnda.
- Parameters:
- rnda: float
Random reflection angle in degrees.
- save_figures: bool
Save figures.
- Returns:
- mean_d80: float
Mean value of D80 in cm.
- sig_d80: float
Standard deviation of D80 in cm.