Source code for simtel.simtel_config_reader

#!/usr/bin/python3
"""Read model parameters and configuration from sim_telarray configuration files."""

import logging
import re

import numpy as np

import simtools.utils.general as gen

__all__ = ["SimtelConfigReader"]


[docs] class SimtelConfigReader: """ Reads model parameters from configuration files and converts to the simtools representation. The output format are simtool-db-style json dicts. Model parameters are read from sim_telarray configuration files. The sim_telarray configuration can be generated using e.g., the following sim_telarray command: ... code-block:: console sim_telarray/bin/sim_telarray \ -c sim_telarray/cfg/CTA/CTA-PROD6-LaPalma.cfg\ -C limits=no-internal -C initlist=no-internal -C list=no-internal\ -C typelist=no-internal -C maximum_telescopes=30\ -DNSB_AUTOSCALE -DNECTARCAM -DHYPER_LAYOUT\ -DNUM_TELESCOPES=30 /dev/null 2>|/dev/null | grep '(@cfg)' Parameters ---------- schema_file: str Schema file describing the model parameter. simtel_config_file: str or Path Path of the file to read from. simtel_telescope_name: str Telescope name (sim_telarray convention) parameter_name: str Parameter name (default: read from schema file) camera_pixels: int Number of camera pixels """ def __init__( self, schema_file, simtel_config_file, simtel_telescope_name, parameter_name=None, camera_pixels=None, ): """Initialize SimtelConfigReader.""" self._logger = logging.getLogger(__name__) self._logger.debug("Init SimtelConfigReader") self.schema_file = schema_file self.schema_dict = ( gen.collect_data_from_file_or_dict(file_name=self.schema_file, in_dict=None) if self.schema_file is not None else None ) self.parameter_name = self.schema_dict.get("name") if self.schema_dict else parameter_name self.simtel_parameter_name = self._get_simtel_parameter_name(self.parameter_name) self.simtel_telescope_name = simtel_telescope_name self.camera_pixels = camera_pixels self.parameter_dict = self.read_simtel_config_file( simtel_config_file, simtel_telescope_name ) def _should_skip_limits_check(self, data_type): """Check if limits should be skipped.""" return data_type == "limits" and self.parameter_dict.get("type") == "bool" def _get_schema_values(self, data_type): """Check schema values for limits and defaults.""" try: if data_type == "limits": _from_schema = [ self.schema_dict["data"][0]["allowed_range"].get("min"), self.schema_dict["data"][0]["allowed_range"].get("max"), ] return _from_schema[0] if _from_schema[1] is None else _from_schema if len(self.schema_dict["data"]) == 1: return self.schema_dict["data"][0]["default"] return [data.get("default") for data in self.schema_dict["data"]] except (KeyError, IndexError): return None @staticmethod def _values_match(_from_simtel, _from_schema): """Check if values match (are close for floats).""" try: if not isinstance(_from_schema, list | np.ndarray) and _from_simtel == _from_schema: return True except ValueError: pass try: if np.all(np.isclose(_from_simtel, _from_schema)): return True except (TypeError, ValueError): pass return False def _log_mismatch_warning(self, data_type, _from_simtel, _from_schema): """Log mismatch warning.""" self._logger.warning(f"Values for {data_type} do not match:") self._logger.warning( f" from simtel: {self.simtel_parameter_name} {_from_simtel} ({type(_from_simtel)})" ) self._logger.warning( f" from schema: {self.parameter_name} {_from_schema} ({type(_from_schema)})" )
[docs] def compare_simtel_config_with_schema(self): """ Compare limits and defaults reported by simtel_array with schema. This is mostly for debugging purposes and includes simple printing. Check for differences in 'default' and 'limits' entries. """ for data_type in ["default", "limits"]: _from_simtel = self.parameter_dict.get(data_type) if self._should_skip_limits_check(data_type): continue _from_schema = self._get_schema_values(data_type) if isinstance(_from_schema, list): _from_schema = np.array(_from_schema, dtype=np.dtype(self.parameter_dict["type"])) if self._values_match(_from_simtel, _from_schema): self._logger.debug(f"Values for {data_type} match") else: self._log_mismatch_warning(data_type, _from_simtel, _from_schema)
[docs] def read_simtel_config_file(self, simtel_config_file, simtel_telescope_name): """ Read sim_telarray configuration file and return a dictionary with the parameter values. Parameters ---------- simtel_config_file: str or Path Path of the file to read from. simtel_telescope_name: str Telescope name (sim_telarray convention) Returns ------- dict Dictionary with the parameter values. """ self._logger.debug( f"Reading simtel config file {simtel_config_file} " f"for parameter {self.parameter_name}" ) matching_lines = {} try: with open(simtel_config_file, encoding="utf-8") as file: for line in file: # split line into parts (space, tabs, comma separated) parts_of_lines = re.split(r",\s*|\s+", line.strip()) if self.simtel_parameter_name == parts_of_lines[1].upper(): matching_lines[parts_of_lines[0]] = parts_of_lines[2:] except FileNotFoundError as exc: self._logger.error(f"File {simtel_config_file} not found.") raise exc if len(matching_lines) == 0: self._logger.info(f"No entries found for parameter {self.simtel_parameter_name}") return None _para_dict = {} # first: extract line type (required for conversions and dimension) _para_dict["type"], _para_dict["dimension"] = self._get_type_and_dimension_from_simtel_cfg( matching_lines["type"] ) # then: extract other fields # (order of keys matter; not all field are present for all parameters) for key in ["default", simtel_telescope_name, "limits"]: try: _para_dict[key], _ = self._add_value_from_simtel_cfg( matching_lines[key], dtype=_para_dict.get("type"), n_dim=_para_dict.get("dimension"), default=_para_dict.get("default"), ) except KeyError: pass return _para_dict
def _resolve_all_in_column(self, column): """ Resolve 'all' entries in a column. This needs to resolve the following cases: no 'all' in any entry; ['all:', '5'], ['all: 5'], ['all:5', '3:1'] This function is fine-tuned to the simtel configuration output. Parameters ---------- column: list List of strings to resolve. Returns ------- list List of resolved strings. """ # don't do anything if all string items in column do not start with 'all' if not any(isinstance(item, str) and item.startswith("all") for item in column): return column, {} self._logger.debug(f"Resolving 'all' entries in column: {column}") # remove 'all:' entries column = [item for item in column if item not in ("all:", "all")] # resolve 'all:5' type entries column = [ item.split(":")[1].replace(" ", "") if item.startswith("all:") else item for item in column ] # find 'index:value' type entries except_from_all = {} for item in column: if ":" in item: index, value = item.split(":") except_from_all[index] = value # finally remove entries containing ':' column = [item for item in column if ":" not in item] return column, except_from_all def _add_value_from_simtel_cfg(self, column, dtype=None, n_dim=1, default=None): """ Extract value(s) from simtel configuration file columns. This function is fine-tuned to the simtel configuration output. Parameters ---------- column: list List of strings to extract value from. dtype: str Data type to convert value to. n_dim: int Length of array to be returned. default: object Default value to extend array to required length. Returns ------- object, int Values extracted from column. Of object is a list of array, return length of array. """ # string represents a lists of values (space or comma separated) if len(column) == 1: column = column[0].split(",") if "," in column[0] else column[0].split(" ") self._logger.debug( f"Adding value from simtel config: {column} (n_dim={n_dim}, default={default})" ) column = [None if item.lower() == "none" else item for item in column] column, except_from_all = self._resolve_all_in_column(column) # extend array to required length (simtel uses sometimes 'all:' for all entries) if n_dim > 1 and len(column) < n_dim: try: # skip formatting: black reformats and violates E203 column += default[len(column):] # fmt: skip except TypeError: # extend array to required length using previous value column.extend([column[-1]] * (n_dim - len(column))) for index, value in except_from_all.items(): column[int(index)] = value if dtype == "bool": column = np.array([bool(int(item)) for item in column]) return self._process_column(column, dtype) def _process_column(self, column, dtype): """ Process and return column prepared in _add_value_from_simtel_cfg. Parameters ---------- column: list List of strings to process. dtype: str Data type to convert value to. """ if len(column) == 1: if column[0] is not None: array_dtype = np.dtype(dtype) if dtype else None processed_value = np.array(column, dtype=array_dtype)[0] return processed_value, 1 return None, 1 if len(column) > 1: return np.array(column, dtype=np.dtype(dtype) if dtype else None), len(column) return None, None def _get_type_and_dimension_from_simtel_cfg(self, column): """ Return type and dimension from simtel configuration column. 'Func' type from simtel is treated as string. Return number of camera pixel for a hard-wired set up parameters. Parameters ---------- column: list List of strings to extract value from. Returns ------- str, int Type and dimension. """ if column[0].lower() == "text" or column[0].lower() == "func": return "str", 1 if column[0].lower() == "ibool": return "bool", int(column[1]) if self.camera_pixels is not None and self.simtel_parameter_name in ["NIGHTSKY_BACKGROUND"]: return str(np.dtype(column[0].lower())), self.camera_pixels return str(np.dtype(column[0].lower())), int(column[1]) def _get_simtel_parameter_name(self, parameter_name): """ Return parameter name as used in sim_telarray. This is documented in the schema file. Parameters ---------- parameter_name: str Model parameter name (as used in simtools) Returns ------- str Parameter name as used in sim_telarray. """ try: for sim_soft in self.schema_dict["simulation_software"]: if sim_soft["name"] == "sim_telarray": return sim_soft["internal_parameter_name"].upper() except (KeyError, TypeError): pass return parameter_name.upper()