"""
Reads the content of either a single histogram (.hdata) or a single simtel_array output (.simtel).
Files can be zst compressed.
"""
import copy
import logging
from pathlib import Path
import numpy as np
from astropy import units as u
from astropy.table import QTable
from ctao_cr_spectra.definitions import IRFDOC_PROTON_SPECTRUM
from ctao_cr_spectra.spectral import cone_solid_angle
from eventio import EventIOFile, Histograms
from eventio.search_utils import yield_toplevel_of_type
from eventio.simtel import MCRunHeader
__all__ = [
"InconsistentHistogramFormatError",
"HistogramIdNotFoundError",
"SimtelIOHistogram",
]
[docs]
class HistogramIdNotFoundError(Exception):
"""Exception for histogram ID not found."""
[docs]
class SimtelIOHistogram:
"""
Reads and generates histograms from sim_telarray output.
Read the content of either a single histogram (.hdata, or .hdata.zst) or a single simtel_array
output file (.simtel or .simtel.zst).
Parameters
----------
histogram_file: str
The histogram (.hdata.zst) or simtel_array (.simtel.zst) file.
area_from_distribution: bool
If true, the area thrown (the area in which the simulated events are distributed)
in the trigger rate calculation is estimated based on the event distribution.
The expected shape of the distribution of events as function of the core distance is
triangular up to the maximum distance. The weighted mean radius of the triangular
distribution is 2/3 times the upper edge. Therefore, when using the
``area_from_distribution`` flag, the mean distance times 3/2, returns just the position of
the upper edge in the triangle distribution with little impact of the binning and little
dependence on the scatter area defined in the simulation. This is special useful when
calculating trigger rate for individual telescopes.
If false, the area thrown is estimated based on the maximum distance as given in
the simulation configuration.
energy_range: list
The energy range used in the simulation. It must be passed as a list of floats and the
energy must be in TeV.
This argument is only needed and used if histogram_file is a .hdata file, in which case the
energy range cannot be retrieved directly from the file.
view_cone: list
The view cone used in the simulation. It must be passed as a list of floats and the
view cone must be in deg.
This argument is only needed and used if histogram_file is a .hdata file, in which case the
view cone cannot be retrieved directly from the file.
"""
def __init__(
self, histogram_file, area_from_distribution=False, energy_range=None, view_cone=None
):
"""Initialize SimtelIOHistogram class."""
self._logger = logging.getLogger(__name__)
self.histogram_file = histogram_file
if not Path(histogram_file).exists():
msg = f"File {histogram_file} does not exist."
self._logger.error(msg)
raise FileNotFoundError
self._config = None
self._total_area = None
self._solid_angle = None
self._total_num_simulated_events = None
self._total_num_triggered_events = None
self._histogram = None
self._initialize_histogram()
self.trigger_rate = None
self.trigger_rate_uncertainty = None
self.trigger_rate_per_energy_bin = None
self.energy_axis = None
self.radius_axis = None
self.area_from_distribution = area_from_distribution
self._set_view_cone(view_cone)
self._set_energy_range(energy_range)
def _initialize_histogram(self):
"""
Initialize lists of histograms and files.
Returns
-------
list:
List of histograms.
"""
with EventIOFile(self.histogram_file) as f:
for obj in yield_toplevel_of_type(f, Histograms):
self.histogram = obj.parse()
@property
def number_of_histogram_types(self):
"""Return number of histograms."""
return len(self.histogram)
[docs]
def get_histogram_type_title(self, histogram_index):
"""
Return the title of the histogram with index histogram_index.
Parameters
----------
histogram_index: int
Histogram index.
Returns
-------
str
Histogram title.
"""
return self.histogram[histogram_index]["title"]
@property
def config(self):
"""
Return information about the input parameters for the simulation.
Returns
-------
dict:
dictionary with information about the simulation (pyeventio MCRunHeader object).
"""
if self._config is None:
# If the file is a .hdata or .hdata.zst, config will continue to be None.
with EventIOFile(self.histogram_file) as f:
# Try to find configuration from .simtel file. If .hdata, config will be None
for obj in f:
if isinstance(obj, MCRunHeader):
self._config = obj.parse()
return self._config
@property
def total_num_simulated_events(self):
"""
Return the total number of simulated events the histograms.
Returns
-------
int:
total number of simulated events.
"""
if self._total_num_simulated_events is None:
events_histogram, _ = self.fill_event_histogram_dicts()
self._total_num_simulated_events = np.sum(events_histogram["data"])
logging.debug(f"Number of total simulated showers: {self._total_num_simulated_events}")
return self._total_num_simulated_events
@property
def total_num_triggered_events(self):
"""
Returns the total number of triggered events.
Please note that this value is not supposed to match the trigger rate x estimated
observation time, as the simulation is optimized for computational time and the energy
distribution assumed is not necessarily the reference cosmic-ray spectra.
Returns
-------
int:
total number of simulated events.
"""
if self._total_num_triggered_events is None:
_, trigger_histogram = self.fill_event_histogram_dicts()
self._total_num_triggered_events = np.sum(trigger_histogram["data"])
logging.debug(f"Number of total triggered showers: {self._total_num_triggered_events}")
return self._total_num_triggered_events
[docs]
def fill_event_histogram_dicts(self):
"""
Get data from the total simulated event and the triggered event histograms.
Returns
-------
dict:
Information about the histograms with simulated events.
dict:
Information about the histograms with triggered events.
Raises
------
HistogramIdNotFoundError:
if histogram ids not found. Problem with the file.
"""
# Save the appropriate histograms to variables
found_simulated_events_hist = False
found_triggered_events_hist = False
events_histogram = None
triggered_events_histogram = None
for hist in self.histogram:
if hist["id"] == 1:
events_histogram = hist
found_simulated_events_hist = True
elif hist["id"] == 2:
triggered_events_histogram = hist
found_triggered_events_hist = True
if found_simulated_events_hist * found_triggered_events_hist:
if "triggered_events_histogram" in locals():
return events_histogram, triggered_events_histogram
msg = "Histograms ids not found. Please check your files."
self._logger.error(msg)
raise HistogramIdNotFoundError
def _set_view_cone(self, view_cone):
"""
View cone used in the simulation.
Parameters
----------
view_cone: list
The view cone used in the simulation. It must be passed as a list of floats and the
view cone must be in deg (as in the CORSIKA configuration).
Raises
------
ValueError:
if input parameter is missing.
"""
if view_cone is None:
try:
self.view_cone = self.config["viewcone"] * u.deg
except TypeError as exc:
msg = (
"view_cone needs to be passed as argument (minimum and maximum of the "
"view cone radius in deg)."
)
self._logger.error(msg)
raise ValueError(msg) from exc
else:
if isinstance(view_cone, u.Quantity):
self.view_cone = view_cone.to(u.deg)
else:
self.view_cone = view_cone * u.deg
@property
def solid_angle(self):
"""
Solid angle corresponding to the view cone.
Returns
-------
astropy.Quantity[u.sr]:
Solid angle corresponding to the view cone.
"""
if self._solid_angle is None:
self._solid_angle = cone_solid_angle(self.view_cone[1]) - cone_solid_angle(
self.view_cone[0]
)
return self._solid_angle
@property
def total_area(self):
"""
Total area covered by the simulated events (original CORSIKA CSCAT), i.e., area thrown.
Returns
-------
astropy.Quantity[area]:
Total area covered on the ground covered by the simulation.
"""
if self._total_area is None:
events_histogram, _ = self.fill_event_histogram_dicts()
self._initialize_histogram_axes(events_histogram)
if self.area_from_distribution is True:
area_from_distribution_max_radius = 1.5 * np.average(
self.radius_axis[:-1], weights=np.sum(events_histogram["data"], axis=0)
)
self._total_area = (np.pi * (area_from_distribution_max_radius * u.m) ** 2).to(
u.cm**2
)
else:
# The max of the core range is always half the upper edge:
# self.radius_axis[-1]/2 is equal to self.config["core_range"][1]
self._total_area = (
np.pi * (((self.radius_axis[-1] / 2 - self.radius_axis[0]) * u.m).to(u.cm)) ** 2
)
return self._total_area
def _set_energy_range(self, energy_range):
"""
Set energy range to be used in the simulations.
Parameters
----------
energy_range: list
The energy range used in the simulation. It must be passed as a list of floats and the
energy must be in TeV.
Raises
------
ValueError:
if input parameter is missing.
"""
if energy_range is None:
try:
self.energy_range = [
self.config["E_range"][0] * u.TeV,
self.config["E_range"][1] * u.TeV,
]
except TypeError as exc: # E_range not in self.config
msg = (
"energy_range needs to be passed as argument (minimum and maximum"
" energies in TeV)."
)
self._logger.error(msg)
raise ValueError(msg) from exc
else:
if isinstance(energy_range, u.Quantity):
self.energy_range = energy_range.to(u.TeV)
else:
self.energy_range = energy_range * u.TeV
@staticmethod
def _produce_triggered_to_sim_fraction_hist(events_histogram, triggered_events_histogram):
"""
Produce a new histogram with the fraction of triggered events over the simulated events.
The dimension of the histogram is reduced, as the rates are summed for all the bins in
impact distance.
Parameters
----------
events_histogram:
A dictionary with "data" corresponding to a 2D histogram (impact distance x energy)
for the simulated events.
triggered_events_histogram:
A dictionary with "data" corresponding to a 2D histogram (impact distance x energy)
for the triggered events.
Returns
-------
event_ratio_histogram:
The new histogram with the fraction of triggered over simulated events.
"""
simulated_events_per_energy_bin = np.sum(events_histogram["data"], axis=1)
triggered_events_per_energy_bin = np.sum(triggered_events_histogram["data"], axis=1)
ratio_per_energy_bin = np.zeros_like(triggered_events_per_energy_bin, dtype=float)
non_zero_indices = np.nonzero(simulated_events_per_energy_bin)[0]
ratio_per_energy_bin[non_zero_indices] = (
triggered_events_per_energy_bin[non_zero_indices]
/ simulated_events_per_energy_bin[non_zero_indices]
)
return ratio_per_energy_bin
[docs]
def compute_system_trigger_rate(self, events_histogram=None, triggered_events_histogram=None):
"""
Compute the system trigger rate and its uncertainty, which are saved as class attributes.
If events_histogram and triggered_events_histogram are passed, they are used to calculate
the trigger rate and trigger rate uncertainty, instead of the histograms from the file.
This is specially useful when calculating the trigger rate for stacked files, in which case
one can pass the histograms resulted from stacking the files to this function.
Default is filling from the file.
Parameters
----------
events_histogram:
A dictionary with "data" corresponding to a 2D histogram (core distance x energy)
for the simulated events.
triggered_events_histogram:
A dictionary with "data" corresponding to a 2D histogram (core distance x energy)
for the triggered events.
"""
if self.trigger_rate is None:
# Get the simulated and triggered 2D histograms from the simtel_array output file
if events_histogram is None and triggered_events_histogram is None:
events_histogram, triggered_events_histogram = self.fill_event_histogram_dicts()
# Calculate triggered/simulated event 1D histogram (energy dependent)
triggered_to_sim_fraction_hist = self._produce_triggered_to_sim_fraction_hist(
events_histogram, triggered_events_histogram
)
self._initialize_histogram_axes(triggered_events_histogram)
# Getting the particle distribution function according to the reference
particle_distribution_function = self.get_particle_distribution_function(
label="reference"
)
# Integrating the flux between the consecutive energy bins. The result given in
# cm-2s-1sr-1
flux_per_energy_bin = self._integrate_in_energy_bin(
particle_distribution_function, self.energy_axis
)
# Derive the trigger rate per energy bin
self.trigger_rate_per_energy_bin = (
triggered_to_sim_fraction_hist
* flux_per_energy_bin
* self.total_area
* self.solid_angle
).decompose()
# Derive the system trigger rate
self.trigger_rate = np.sum(self.trigger_rate_per_energy_bin)
# Derive the uncertainty in the system trigger rate estimate
self.trigger_rate_uncertainty = self.estimate_trigger_rate_uncertainty(
self.trigger_rate,
np.sum(events_histogram["data"]),
np.sum(triggered_events_histogram["data"]),
)
return self.trigger_rate, self.trigger_rate_uncertainty
[docs]
def trigger_info_in_table(self):
"""
Provide the trigger rate per energy bin in tabulated form.
Returns
-------
astropy.QTable:
The QTable instance with the trigger rate per energy bin.
"""
meta = self.produce_trigger_meta_data()
return QTable(
[self.energy_axis[:-1] * u.TeV, (self.trigger_rate_per_energy_bin.to(u.Hz))],
names=("Energy (TeV)", "Trigger rate (Hz)"),
meta=meta,
)
def _integrate_in_energy_bin(self, particle_distribution_function, energy_axis):
"""
Integrate the particle distribution.
The function integrates between the consecutive energy bins given by the energy_axis array.
Parameters
----------
particle_distribution_function: ctao_cr_spectra.spectral.PowerLaw
The function describing the spectral distribution.
energy_axis: numpy.array
The array with the simulated particle energies.
Returns
-------
astropy.Quantity:
astropy.Quantity of a numpy array with the energy integrated flux.
"""
unit = None
flux_per_energy_bin = []
for i_energy, _ in enumerate(energy_axis[:-1]):
integrated_flux = particle_distribution_function.integrate_energy(
energy_axis[i_energy] * u.TeV, energy_axis[i_energy + 1] * u.TeV
).decompose(bases=[u.s, u.cm, u.sr])
if unit is None:
unit = integrated_flux.unit
flux_per_energy_bin.append(integrated_flux.value)
return np.array(flux_per_energy_bin) * unit
def _initialize_histogram_axes(self, events_histogram):
"""
Initialize the two axes of a histogram.
The two axes are: the array with the edges of the bins in core
distance and the edges of the array with the energy bins.
Parameters
----------
events_histogram:
A single histogram from where to extract axis information.
"""
self.radius_axis = np.linspace(
events_histogram["lower_x"],
events_histogram["upper_x"],
events_histogram["n_bins_x"] + 1,
endpoint=True,
)
self.energy_axis = np.logspace(
events_histogram["lower_y"],
events_histogram["upper_y"],
events_histogram["n_bins_y"] + 1,
endpoint=True,
)
[docs]
def get_particle_distribution_function(self, label="reference"):
"""
Get the particle distribution function.
This depends on whether one wants the reference CR distribution or the distribution
used in the simulation. This is controlled by label.
By using label="reference", one gets the distribution function according to a pre-defined CR
distribution, while by using label="simulation", the spectral index of the distribution
function from the simulation is used. Naturally, label="simulation" only works when the
input file is a .simtel file and not a .hdata file.
Parameters
----------
label: str
label defining which distribution function. Possible values are: "reference", or
"simulation".
Returns
-------
ctao_cr_spectra.spectral.PowerLaw
The function describing the spectral distribution.
"""
if label == "reference":
particle_distribution_function = copy.copy(IRFDOC_PROTON_SPECTRUM)
elif label == "simulation":
particle_distribution_function = self._get_simulation_spectral_distribution_function()
else:
msg = f"label {label} is not valid. Please use either 'reference' or 'simulation'."
self._logger.error(msg)
raise ValueError(msg)
return particle_distribution_function
def _get_simulation_spectral_distribution_function(self):
"""
Get the simulation particle energy distribution according to its configuration.
Returns
-------
ctao_cr_spectra.spectral.PowerLaw
The function describing the spectral distribution.
Raises
------
ValueError:
if input parameter is missing.
"""
spectral_distribution = copy.copy(IRFDOC_PROTON_SPECTRUM)
try:
spectral_distribution.index = self.config["spectral_index"]
except TypeError as exc:
msg = (
"spectral_index not found in the configuration of the file. "
"Consider using a .simtel file instead."
)
self._logger.error(msg)
raise ValueError(msg) from exc
return spectral_distribution
[docs]
def estimate_observation_time(self, stacked_num_simulated_events=None):
"""
Estimates the observation time corresponding to the simulated number of events.
It uses the CTAO reference cosmic-ray spectra, the total number of particles simulated,
and other information from the simulation configuration self.config.
If stacked_num_simulated_events is given, the observation time is estimated from it instead
of from the simulation configuration (useful for the stacked trigger rate estimate).
Parameters
----------
stacked_num_simulated_events: int
total number of simulated events for the stacked dataset.
Returns
-------
astropy.Quantity[time]
Estimated observation time based on the total number of particles simulated.
"""
first_estimate = IRFDOC_PROTON_SPECTRUM.compute_number_events(
self.view_cone[0],
self.view_cone[1],
1 * u.s,
self.total_area,
self.energy_range[0],
self.energy_range[1],
)
if stacked_num_simulated_events is None:
return (self.total_num_simulated_events / first_estimate) * u.s
return (stacked_num_simulated_events / first_estimate) * u.s
[docs]
def estimate_trigger_rate_uncertainty(
self, trigger_rate_estimate, num_simulated_events, num_triggered_events
):
"""
Estimate the trigger rate uncertainty.
The calculation is based on the number of simulated and triggered events.
Poisson statistics are assumed. The uncertainty is calculated based on propagation
of the individual uncertainties.
If stacked_num_simulated_events is passed, the uncertainty is estimated based on it instead
of based on the total number of trigger events from the simulation configuration
(useful for the stacked trigger rate estimate).
Parameters
----------
trigger_rate_estimate: astropy.Quantity[1/time]
The already estimated the trigger rate.
num_simulated_events: int
Total number of simulated events.
num_triggered_events: int
Total number of triggered events.
Returns
-------
astropy.Quantity[1/time]
Uncertainty in the trigger rate estimate.
"""
# pylint: disable=E1101
return (
trigger_rate_estimate.value
* np.sqrt(1 / num_triggered_events + 1 / num_simulated_events)
) * trigger_rate_estimate.unit
[docs]
def print_info(self, mode=None):
"""
Print information on the geometry and input parameters.
Returns
-------
dict:
Dictionary with the information, e.g., view angle, energy range, etc.
"""
info_dict = {
"view_cone": self.view_cone,
"solid_angle": self.solid_angle,
"total_area": self.total_area,
"energy_range": self.energy_range,
"total_num_simulated_events": self.total_num_simulated_events,
"total_num_triggered_events": self.total_num_triggered_events,
}
if mode != "silent":
print(info_dict)
return info_dict